sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(925, base_ring=CyclotomicField(90))
M = H._module
chi = DirichletCharacter(H, M([27,50]))
pari:[g,chi] = znchar(Mod(514,925))
| Modulus: | \(925\) | |
| Conductor: | \(925\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(90\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{925}(9,\cdot)\)
\(\chi_{925}(34,\cdot)\)
\(\chi_{925}(44,\cdot)\)
\(\chi_{925}(144,\cdot)\)
\(\chi_{925}(164,\cdot)\)
\(\chi_{925}(194,\cdot)\)
\(\chi_{925}(219,\cdot)\)
\(\chi_{925}(229,\cdot)\)
\(\chi_{925}(234,\cdot)\)
\(\chi_{925}(329,\cdot)\)
\(\chi_{925}(379,\cdot)\)
\(\chi_{925}(404,\cdot)\)
\(\chi_{925}(414,\cdot)\)
\(\chi_{925}(419,\cdot)\)
\(\chi_{925}(514,\cdot)\)
\(\chi_{925}(534,\cdot)\)
\(\chi_{925}(564,\cdot)\)
\(\chi_{925}(589,\cdot)\)
\(\chi_{925}(604,\cdot)\)
\(\chi_{925}(719,\cdot)\)
\(\chi_{925}(784,\cdot)\)
\(\chi_{925}(789,\cdot)\)
\(\chi_{925}(884,\cdot)\)
\(\chi_{925}(904,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((852,76)\) → \((e\left(\frac{3}{10}\right),e\left(\frac{5}{9}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) |
| \( \chi_{ 925 }(514, a) \) |
\(1\) | \(1\) | \(e\left(\frac{77}{90}\right)\) | \(e\left(\frac{49}{90}\right)\) | \(e\left(\frac{32}{45}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{4}{45}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{23}{90}\right)\) | \(e\left(\frac{73}{90}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)