Properties

Label 925.bz
Modulus $925$
Conductor $925$
Order $90$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(90)) M = H._module chi = DirichletCharacter(H, M([63,40])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(9,925)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(925\)
Conductor: \(925\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(90\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{45})$
Fixed field: Number field defined by a degree 90 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(6\) \(7\) \(8\) \(9\) \(11\) \(12\) \(13\)
\(\chi_{925}(9,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{90}\right)\) \(e\left(\frac{41}{90}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{67}{90}\right)\) \(e\left(\frac{17}{90}\right)\)
\(\chi_{925}(34,\cdot)\) \(1\) \(1\) \(e\left(\frac{83}{90}\right)\) \(e\left(\frac{61}{90}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{47}{90}\right)\) \(e\left(\frac{67}{90}\right)\)
\(\chi_{925}(44,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{90}\right)\) \(e\left(\frac{37}{90}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{89}{90}\right)\) \(e\left(\frac{79}{90}\right)\)
\(\chi_{925}(144,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{90}\right)\) \(e\left(\frac{67}{90}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{59}{90}\right)\) \(e\left(\frac{19}{90}\right)\)
\(\chi_{925}(164,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{90}\right)\) \(e\left(\frac{89}{90}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{73}{90}\right)\) \(e\left(\frac{83}{90}\right)\)
\(\chi_{925}(194,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{90}\right)\) \(e\left(\frac{77}{90}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{49}{90}\right)\) \(e\left(\frac{89}{90}\right)\)
\(\chi_{925}(219,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{90}\right)\) \(e\left(\frac{7}{90}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{29}{90}\right)\) \(e\left(\frac{49}{90}\right)\)
\(\chi_{925}(229,\cdot)\) \(1\) \(1\) \(e\left(\frac{89}{90}\right)\) \(e\left(\frac{73}{90}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{71}{90}\right)\) \(e\left(\frac{61}{90}\right)\)
\(\chi_{925}(234,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{90}\right)\) \(e\left(\frac{11}{90}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{7}{90}\right)\) \(e\left(\frac{77}{90}\right)\)
\(\chi_{925}(329,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{90}\right)\) \(e\left(\frac{13}{90}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{41}{90}\right)\) \(e\left(\frac{1}{90}\right)\)
\(\chi_{925}(379,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{90}\right)\) \(e\left(\frac{23}{90}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{31}{90}\right)\) \(e\left(\frac{71}{90}\right)\)
\(\chi_{925}(404,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{90}\right)\) \(e\left(\frac{43}{90}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{11}{90}\right)\) \(e\left(\frac{31}{90}\right)\)
\(\chi_{925}(414,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{90}\right)\) \(e\left(\frac{19}{90}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{53}{90}\right)\) \(e\left(\frac{43}{90}\right)\)
\(\chi_{925}(419,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{90}\right)\) \(e\left(\frac{47}{90}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{79}{90}\right)\) \(e\left(\frac{59}{90}\right)\)
\(\chi_{925}(514,\cdot)\) \(1\) \(1\) \(e\left(\frac{77}{90}\right)\) \(e\left(\frac{49}{90}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{23}{90}\right)\) \(e\left(\frac{73}{90}\right)\)
\(\chi_{925}(534,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{90}\right)\) \(e\left(\frac{71}{90}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{37}{90}\right)\) \(e\left(\frac{47}{90}\right)\)
\(\chi_{925}(564,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{90}\right)\) \(e\left(\frac{59}{90}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{13}{90}\right)\) \(e\left(\frac{53}{90}\right)\)
\(\chi_{925}(589,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{90}\right)\) \(e\left(\frac{79}{90}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{83}{90}\right)\) \(e\left(\frac{13}{90}\right)\)
\(\chi_{925}(604,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{90}\right)\) \(e\left(\frac{83}{90}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{61}{90}\right)\) \(e\left(\frac{41}{90}\right)\)
\(\chi_{925}(719,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{90}\right)\) \(e\left(\frac{17}{90}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{19}{90}\right)\) \(e\left(\frac{29}{90}\right)\)
\(\chi_{925}(784,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{90}\right)\) \(e\left(\frac{1}{90}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{17}{90}\right)\) \(e\left(\frac{7}{90}\right)\)
\(\chi_{925}(789,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{90}\right)\) \(e\left(\frac{29}{90}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{43}{90}\right)\) \(e\left(\frac{23}{90}\right)\)
\(\chi_{925}(884,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{90}\right)\) \(e\left(\frac{31}{90}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{77}{90}\right)\) \(e\left(\frac{37}{90}\right)\)
\(\chi_{925}(904,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{90}\right)\) \(e\left(\frac{53}{90}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{1}{90}\right)\) \(e\left(\frac{11}{90}\right)\)