sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(924364, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([0,28,19]))
pari:[g,chi] = znchar(Mod(897369,924364))
\(\chi_{924364}(47765,\cdot)\)
\(\chi_{924364}(209941,\cdot)\)
\(\chi_{924364}(263041,\cdot)\)
\(\chi_{924364}(289753,\cdot)\)
\(\chi_{924364}(390485,\cdot)\)
\(\chi_{924364}(392305,\cdot)\)
\(\chi_{924364}(429361,\cdot)\)
\(\chi_{924364}(522629,\cdot)\)
\(\chi_{924364}(652733,\cdot)\)
\(\chi_{924364}(852917,\cdot)\)
\(\chi_{924364}(895001,\cdot)\)
\(\chi_{924364}(897369,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((462183,528209,792317)\) → \((1,e\left(\frac{2}{3}\right),e\left(\frac{19}{42}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(23\) | \(25\) |
| \( \chi_{ 924364 }(897369, a) \) |
\(1\) | \(1\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{4}{7}\right)\) |
sage:chi.jacobi_sum(n)