# Properties

 Label 91.m Modulus $91$ Conductor $91$ Order $6$ Real no Primitive yes Minimal yes Parity odd

# Related objects

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(91, base_ring=CyclotomicField(6))

M = H._module

chi = DirichletCharacter(H, M([1,2]))

chi.galois_orbit()

[g,chi] = znchar(Mod(3,91))

order = charorder(g,chi)

[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Basic properties

 Modulus: $$91$$ Conductor: $$91$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$6$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Related number fields

 Field of values: $$\Q(\sqrt{-3})$$ Fixed field: 6.0.480024727.2

## Characters in Galois orbit

Character $$-1$$ $$1$$ $$2$$ $$3$$ $$4$$ $$5$$ $$6$$ $$8$$ $$9$$ $$10$$ $$11$$ $$12$$
$$\chi_{91}(3,\cdot)$$ $$-1$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$-1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$1$$ $$1$$ $$-1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{91}(61,\cdot)$$ $$-1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$-1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$1$$ $$1$$ $$-1$$ $$1$$ $$e\left(\frac{1}{6}\right)$$