# Properties

 Modulus 91 Structure $$C_{12}\times C_{6}$$ Order 72

Show commands for: SageMath / Pari/GP

sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed

sage: H = DirichletGroup_conrey(91)

pari: g = idealstar(,91,2)

## Character group

 sage: G.order()  pari: g.no Order = 72 sage: H.invariants()  pari: g.cyc Structure = $$C_{12}\times C_{6}$$ sage: H.gens()  pari: g.gen Generators = $\chi_{91}(15,\cdot)$, $\chi_{91}(66,\cdot)$

## First 32 of 72 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

orbit label order primitive -1 1 2 3 4 5 6 8 9 10 11 12
$$\chi_{91}(1,\cdot)$$ 91.a 1 no $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$
$$\chi_{91}(2,\cdot)$$ 91.x 12 yes $$-1$$ $$1$$ $$-i$$ $$e\left(\frac{2}{3}\right)$$ $$-1$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$i$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{91}(3,\cdot)$$ 91.m 6 yes $$-1$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$-1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$1$$ $$1$$ $$-1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{91}(4,\cdot)$$ 91.k 6 yes $$1$$ $$1$$ $$-1$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$-1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$
$$\chi_{91}(5,\cdot)$$ 91.bb 12 yes $$1$$ $$1$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$i$$ $$i$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$
$$\chi_{91}(6,\cdot)$$ 91.bc 12 yes $$1$$ $$1$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$i$$ $$e\left(\frac{7}{12}\right)$$ $$i$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$1$$
$$\chi_{91}(8,\cdot)$$ 91.j 4 no $$-1$$ $$1$$ $$i$$ $$1$$ $$-1$$ $$i$$ $$i$$ $$-i$$ $$1$$ $$-1$$ $$-i$$ $$-1$$
$$\chi_{91}(9,\cdot)$$ 91.g 3 yes $$1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$1$$ $$1$$ $$1$$ $$e\left(\frac{2}{3}\right)$$
$$\chi_{91}(10,\cdot)$$ 91.p 6 yes $$-1$$ $$1$$ $$e\left(\frac{1}{6}\right)$$ $$-1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$-1$$ $$1$$ $$-1$$ $$-1$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{91}(11,\cdot)$$ 91.bd 12 yes $$-1$$ $$1$$ $$e\left(\frac{11}{12}\right)$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$-i$$ $$1$$ $$-1$$ $$-i$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{91}(12,\cdot)$$ 91.s 6 yes $$-1$$ $$1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$-1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{91}(15,\cdot)$$ 91.y 12 no $$-1$$ $$1$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$-i$$ $$e\left(\frac{5}{12}\right)$$ $$i$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$-1$$
$$\chi_{91}(16,\cdot)$$ 91.h 3 yes $$1$$ $$1$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$
$$\chi_{91}(17,\cdot)$$ 91.l 6 yes $$-1$$ $$1$$ $$-1$$ $$e\left(\frac{5}{6}\right)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$-1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{91}(18,\cdot)$$ 91.z 12 yes $$-1$$ $$1$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$-i$$ $$i$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{91}(19,\cdot)$$ 91.w 12 yes $$1$$ $$1$$ $$e\left(\frac{1}{12}\right)$$ $$-1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$i$$ $$1$$ $$1$$ $$i$$ $$e\left(\frac{2}{3}\right)$$
$$\chi_{91}(20,\cdot)$$ 91.bc 12 yes $$1$$ $$1$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$-i$$ $$e\left(\frac{1}{12}\right)$$ $$-i$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$1$$
$$\chi_{91}(22,\cdot)$$ 91.f 3 no $$1$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$1$$
$$\chi_{91}(23,\cdot)$$ 91.k 6 yes $$1$$ $$1$$ $$-1$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$-1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$
$$\chi_{91}(24,\cdot)$$ 91.w 12 yes $$1$$ $$1$$ $$e\left(\frac{11}{12}\right)$$ $$-1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$-i$$ $$1$$ $$1$$ $$-i$$ $$e\left(\frac{1}{3}\right)$$
$$\chi_{91}(25,\cdot)$$ 91.r 6 yes $$1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$-1$$ $$-1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$
$$\chi_{91}(27,\cdot)$$ 91.d 2 no $$-1$$ $$1$$ $$1$$ $$-1$$ $$1$$ $$-1$$ $$-1$$ $$1$$ $$1$$ $$-1$$ $$1$$ $$-1$$
$$\chi_{91}(29,\cdot)$$ 91.f 3 no $$1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$1$$
$$\chi_{91}(30,\cdot)$$ 91.u 6 yes $$1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$-1$$ $$1$$ $$1$$ $$-1$$ $$e\left(\frac{2}{3}\right)$$
$$\chi_{91}(31,\cdot)$$ 91.bb 12 yes $$1$$ $$1$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$i$$ $$i$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$
$$\chi_{91}(32,\cdot)$$ 91.x 12 yes $$-1$$ $$1$$ $$-i$$ $$e\left(\frac{1}{3}\right)$$ $$-1$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$i$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{91}(33,\cdot)$$ 91.w 12 yes $$1$$ $$1$$ $$e\left(\frac{7}{12}\right)$$ $$-1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$-i$$ $$1$$ $$1$$ $$-i$$ $$e\left(\frac{2}{3}\right)$$
$$\chi_{91}(34,\cdot)$$ 91.i 4 yes $$1$$ $$1$$ $$i$$ $$-1$$ $$-1$$ $$-i$$ $$-i$$ $$-i$$ $$1$$ $$1$$ $$-i$$ $$1$$
$$\chi_{91}(36,\cdot)$$ 91.q 6 no $$1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$-1$$ $$e\left(\frac{1}{6}\right)$$ $$-1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$1$$
$$\chi_{91}(37,\cdot)$$ 91.x 12 yes $$-1$$ $$1$$ $$i$$ $$e\left(\frac{2}{3}\right)$$ $$-1$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$-i$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{91}(38,\cdot)$$ 91.s 6 yes $$-1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$-1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{91}(40,\cdot)$$ 91.o 6 no $$-1$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$-1$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$