Properties

Label 8925.kj
Modulus $8925$
Conductor $8925$
Order $120$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8925, base_ring=CyclotomicField(120)) M = H._module chi = DirichletCharacter(H, M([60,6,40,105])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(2,8925)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8925\)
Conductor: \(8925\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(120\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{120})$
Fixed field: Number field defined by a degree 120 polynomial (not computed)

First 31 of 32 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(8\) \(11\) \(13\) \(16\) \(19\) \(22\) \(23\) \(26\)
\(\chi_{8925}(2,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{91}{120}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{101}{120}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{8925}(128,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{37}{120}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{107}{120}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{8925}(263,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{89}{120}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{79}{120}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{8925}(767,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{83}{120}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{13}{120}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{8925}(1052,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{31}{120}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{41}{120}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{8925}(1283,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{73}{120}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{23}{120}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{8925}(1787,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{19}{120}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{29}{120}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{8925}(1817,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{23}{120}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{73}{120}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{8925}(1913,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{109}{120}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{59}{120}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{8925}(2048,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{41}{120}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{31}{120}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{8925}(2552,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{11}{120}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{61}{120}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{8925}(2678,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{77}{120}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{67}{120}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{8925}(2837,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{79}{120}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{89}{120}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{8925}(3572,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{67}{120}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{77}{120}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{8925}(3602,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{71}{120}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{1}{120}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{8925}(3698,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{61}{120}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{11}{120}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{8925}(3833,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{113}{120}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{103}{120}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{8925}(4337,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{59}{120}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{109}{120}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{8925}(4463,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{29}{120}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{19}{120}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{8925}(4622,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{7}{120}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{17}{120}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{8925}(4853,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{97}{120}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{47}{120}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{8925}(5387,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{119}{120}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{49}{120}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{8925}(5483,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{13}{120}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{83}{120}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{8925}(6122,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{107}{120}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{37}{120}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{8925}(6248,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{101}{120}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{91}{120}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{8925}(6638,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{49}{120}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{119}{120}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{8925}(7142,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{43}{120}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{53}{120}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{8925}(7172,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{47}{120}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{97}{120}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{8925}(7403,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{17}{120}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{7}{120}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{8925}(8033,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{53}{120}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{43}{120}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{8925}(8192,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{103}{120}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{113}{120}\right)\) \(e\left(\frac{11}{12}\right)\)