sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8925, base_ring=CyclotomicField(120))
M = H._module
chi = DirichletCharacter(H, M([60,18,40,75]))
pari:[g,chi] = znchar(Mod(1283,8925))
| Modulus: | \(8925\) | |
| Conductor: | \(8925\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(120\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{8925}(2,\cdot)\)
\(\chi_{8925}(128,\cdot)\)
\(\chi_{8925}(263,\cdot)\)
\(\chi_{8925}(767,\cdot)\)
\(\chi_{8925}(1052,\cdot)\)
\(\chi_{8925}(1283,\cdot)\)
\(\chi_{8925}(1787,\cdot)\)
\(\chi_{8925}(1817,\cdot)\)
\(\chi_{8925}(1913,\cdot)\)
\(\chi_{8925}(2048,\cdot)\)
\(\chi_{8925}(2552,\cdot)\)
\(\chi_{8925}(2678,\cdot)\)
\(\chi_{8925}(2837,\cdot)\)
\(\chi_{8925}(3572,\cdot)\)
\(\chi_{8925}(3602,\cdot)\)
\(\chi_{8925}(3698,\cdot)\)
\(\chi_{8925}(3833,\cdot)\)
\(\chi_{8925}(4337,\cdot)\)
\(\chi_{8925}(4463,\cdot)\)
\(\chi_{8925}(4622,\cdot)\)
\(\chi_{8925}(4853,\cdot)\)
\(\chi_{8925}(5387,\cdot)\)
\(\chi_{8925}(5483,\cdot)\)
\(\chi_{8925}(6122,\cdot)\)
\(\chi_{8925}(6248,\cdot)\)
\(\chi_{8925}(6638,\cdot)\)
\(\chi_{8925}(7142,\cdot)\)
\(\chi_{8925}(7172,\cdot)\)
\(\chi_{8925}(7403,\cdot)\)
\(\chi_{8925}(8033,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5951,6427,2551,8401)\) → \((-1,e\left(\frac{3}{20}\right),e\left(\frac{1}{3}\right),e\left(\frac{5}{8}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(19\) | \(22\) | \(23\) | \(26\) |
| \( \chi_{ 8925 }(1283, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{73}{120}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{27}{40}\right)\) | \(e\left(\frac{23}{120}\right)\) | \(e\left(\frac{5}{12}\right)\) |
sage:chi.jacobi_sum(n)