sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8820, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([21,28,21,5]))
pari:[g,chi] = znchar(Mod(439,8820))
Modulus: | \(8820\) | |
Conductor: | \(8820\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(42\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{8820}(439,\cdot)\)
\(\chi_{8820}(1039,\cdot)\)
\(\chi_{8820}(1699,\cdot)\)
\(\chi_{8820}(2299,\cdot)\)
\(\chi_{8820}(4219,\cdot)\)
\(\chi_{8820}(4819,\cdot)\)
\(\chi_{8820}(5479,\cdot)\)
\(\chi_{8820}(6079,\cdot)\)
\(\chi_{8820}(6739,\cdot)\)
\(\chi_{8820}(7339,\cdot)\)
\(\chi_{8820}(7999,\cdot)\)
\(\chi_{8820}(8599,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((4411,7841,7057,1081)\) → \((-1,e\left(\frac{2}{3}\right),-1,e\left(\frac{5}{42}\right))\)
\(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 8820 }(439, a) \) |
\(1\) | \(1\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{8}{21}\right)\) |
sage:chi.jacobi_sum(n)