Properties

Label 8820.3977
Modulus $8820$
Conductor $735$
Order $28$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8820, base_ring=CyclotomicField(28)) M = H._module chi = DirichletCharacter(H, M([0,14,7,24]))
 
Copy content pari:[g,chi] = znchar(Mod(3977,8820))
 

Basic properties

Modulus: \(8820\)
Conductor: \(735\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(28\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{735}(302,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8820.fo

\(\chi_{8820}(953,\cdot)\) \(\chi_{8820}(1457,\cdot)\) \(\chi_{8820}(2213,\cdot)\) \(\chi_{8820}(2717,\cdot)\) \(\chi_{8820}(3473,\cdot)\) \(\chi_{8820}(3977,\cdot)\) \(\chi_{8820}(4733,\cdot)\) \(\chi_{8820}(5237,\cdot)\) \(\chi_{8820}(5993,\cdot)\) \(\chi_{8820}(6497,\cdot)\) \(\chi_{8820}(7757,\cdot)\) \(\chi_{8820}(8513,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{28})\)
Fixed field: Number field defined by a degree 28 polynomial

Values on generators

\((4411,7841,7057,1081)\) → \((1,-1,i,e\left(\frac{6}{7}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 8820 }(3977, a) \) \(1\)\(1\)\(e\left(\frac{11}{14}\right)\)\(e\left(\frac{1}{28}\right)\)\(e\left(\frac{5}{28}\right)\)\(-1\)\(e\left(\frac{23}{28}\right)\)\(e\left(\frac{3}{7}\right)\)\(1\)\(e\left(\frac{19}{28}\right)\)\(e\left(\frac{5}{14}\right)\)\(e\left(\frac{25}{28}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8820 }(3977,a) \;\) at \(\;a = \) e.g. 2