sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8820, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([0,35,21,39]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(1049,8820))
         
     
    
  \(\chi_{8820}(209,\cdot)\)
  \(\chi_{8820}(1049,\cdot)\)
  \(\chi_{8820}(2309,\cdot)\)
  \(\chi_{8820}(2729,\cdot)\)
  \(\chi_{8820}(3569,\cdot)\)
  \(\chi_{8820}(3989,\cdot)\)
  \(\chi_{8820}(4829,\cdot)\)
  \(\chi_{8820}(5249,\cdot)\)
  \(\chi_{8820}(6089,\cdot)\)
  \(\chi_{8820}(6509,\cdot)\)
  \(\chi_{8820}(7769,\cdot)\)
  \(\chi_{8820}(8609,\cdot)\)
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((4411,7841,7057,1081)\) → \((1,e\left(\frac{5}{6}\right),-1,e\left(\frac{13}{14}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |       
    
    
      | \( \chi_{ 8820 }(1049, a) \) | 
      \(1\) | \(1\) | \(e\left(\frac{41}{42}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(-1\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{17}{42}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)