sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(875, base_ring=CyclotomicField(50))
M = H._module
chi = DirichletCharacter(H, M([29,0]))
pari:[g,chi] = znchar(Mod(869,875))
\(\chi_{875}(29,\cdot)\)
\(\chi_{875}(64,\cdot)\)
\(\chi_{875}(134,\cdot)\)
\(\chi_{875}(169,\cdot)\)
\(\chi_{875}(204,\cdot)\)
\(\chi_{875}(239,\cdot)\)
\(\chi_{875}(309,\cdot)\)
\(\chi_{875}(344,\cdot)\)
\(\chi_{875}(379,\cdot)\)
\(\chi_{875}(414,\cdot)\)
\(\chi_{875}(484,\cdot)\)
\(\chi_{875}(519,\cdot)\)
\(\chi_{875}(554,\cdot)\)
\(\chi_{875}(589,\cdot)\)
\(\chi_{875}(659,\cdot)\)
\(\chi_{875}(694,\cdot)\)
\(\chi_{875}(729,\cdot)\)
\(\chi_{875}(764,\cdot)\)
\(\chi_{875}(834,\cdot)\)
\(\chi_{875}(869,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((127,626)\) → \((e\left(\frac{29}{50}\right),1)\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) | \(16\) |
\( \chi_{ 875 }(869, a) \) |
\(1\) | \(1\) | \(e\left(\frac{29}{50}\right)\) | \(e\left(\frac{3}{50}\right)\) | \(e\left(\frac{4}{25}\right)\) | \(e\left(\frac{16}{25}\right)\) | \(e\left(\frac{37}{50}\right)\) | \(e\left(\frac{3}{25}\right)\) | \(e\left(\frac{2}{25}\right)\) | \(e\left(\frac{11}{50}\right)\) | \(e\left(\frac{31}{50}\right)\) | \(e\left(\frac{8}{25}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)