Normalized defining polynomial
\( x^{20} - x^{15} + x^{10} - x^{5} + 1 \)
Invariants
Degree: | $20$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 10]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(2910383045673370361328125\)
\(\medspace = 5^{35}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(16.72\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{7/4}\approx 16.71850762441055$ | ||
Ramified primes: |
\(5\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
$\card{ \Gal(K/\Q) }$: | $20$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(25=5^{2}\) | ||
Dirichlet character group: | $\lbrace$$\chi_{25}(1,·)$, $\chi_{25}(2,·)$, $\chi_{25}(3,·)$, $\chi_{25}(4,·)$, $\chi_{25}(6,·)$, $\chi_{25}(7,·)$, $\chi_{25}(8,·)$, $\chi_{25}(9,·)$, $\chi_{25}(11,·)$, $\chi_{25}(12,·)$, $\chi_{25}(13,·)$, $\chi_{25}(14,·)$, $\chi_{25}(16,·)$, $\chi_{25}(17,·)$, $\chi_{25}(18,·)$, $\chi_{25}(19,·)$, $\chi_{25}(21,·)$, $\chi_{25}(22,·)$, $\chi_{25}(23,·)$, $\chi_{25}(24,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | unavailable$^{512}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $9$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( a \)
(order $50$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$a^{19}+a^{9}$, $a^{19}+a^{16}-a^{14}+a^{9}-a^{4}$, $a^{18}-a^{13}+a^{8}-a^{3}-1$, $a^{10}+a^{6}$, $a^{19}-a^{15}+a^{10}-a^{5}+1$, $a^{16}+a^{4}$, $a^{7}+a$, $a^{16}-a^{7}$, $a^{8}-a$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 161406.837641 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{10}\cdot 161406.837641 \cdot 1}{50\cdot\sqrt{2910383045673370361328125}}\cr\approx \mathstrut & 0.181457754409 \end{aligned}\]
Galois group
A cyclic group of order 20 |
The 20 conjugacy class representatives for $C_{20}$ |
Character table for $C_{20}$ |
Intermediate fields
\(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 5.5.390625.1, \(\Q(\zeta_{25})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $20$ | $20$ | R | ${\href{/padicField/7.4.0.1}{4} }^{5}$ | ${\href{/padicField/11.5.0.1}{5} }^{4}$ | $20$ | $20$ | ${\href{/padicField/19.10.0.1}{10} }^{2}$ | $20$ | ${\href{/padicField/29.10.0.1}{10} }^{2}$ | ${\href{/padicField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/padicField/41.5.0.1}{5} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{5}$ | $20$ | $20$ | ${\href{/padicField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\)
| Deg $20$ | $20$ | $1$ | $35$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.5.4t1.a.b | $1$ | $ 5 $ | \(\Q(\zeta_{5})\) | $C_4$ (as 4T1) | $0$ | $-1$ |
* | 1.5.2t1.a.a | $1$ | $ 5 $ | \(\Q(\sqrt{5}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 1.5.4t1.a.a | $1$ | $ 5 $ | \(\Q(\zeta_{5})\) | $C_4$ (as 4T1) | $0$ | $-1$ |
* | 1.25.5t1.a.a | $1$ | $ 5^{2}$ | 5.5.390625.1 | $C_5$ (as 5T1) | $0$ | $1$ |
* | 1.25.20t1.a.c | $1$ | $ 5^{2}$ | \(\Q(\zeta_{25})\) | $C_{20}$ (as 20T1) | $0$ | $-1$ |
* | 1.25.10t1.a.d | $1$ | $ 5^{2}$ | \(\Q(\zeta_{25})^+\) | $C_{10}$ (as 10T1) | $0$ | $1$ |
* | 1.25.20t1.a.f | $1$ | $ 5^{2}$ | \(\Q(\zeta_{25})\) | $C_{20}$ (as 20T1) | $0$ | $-1$ |
* | 1.25.5t1.a.b | $1$ | $ 5^{2}$ | 5.5.390625.1 | $C_5$ (as 5T1) | $0$ | $1$ |
* | 1.25.20t1.a.h | $1$ | $ 5^{2}$ | \(\Q(\zeta_{25})\) | $C_{20}$ (as 20T1) | $0$ | $-1$ |
* | 1.25.10t1.a.c | $1$ | $ 5^{2}$ | \(\Q(\zeta_{25})^+\) | $C_{10}$ (as 10T1) | $0$ | $1$ |
* | 1.25.20t1.a.a | $1$ | $ 5^{2}$ | \(\Q(\zeta_{25})\) | $C_{20}$ (as 20T1) | $0$ | $-1$ |
* | 1.25.5t1.a.c | $1$ | $ 5^{2}$ | 5.5.390625.1 | $C_5$ (as 5T1) | $0$ | $1$ |
* | 1.25.20t1.a.e | $1$ | $ 5^{2}$ | \(\Q(\zeta_{25})\) | $C_{20}$ (as 20T1) | $0$ | $-1$ |
* | 1.25.10t1.a.b | $1$ | $ 5^{2}$ | \(\Q(\zeta_{25})^+\) | $C_{10}$ (as 10T1) | $0$ | $1$ |
* | 1.25.20t1.a.d | $1$ | $ 5^{2}$ | \(\Q(\zeta_{25})\) | $C_{20}$ (as 20T1) | $0$ | $-1$ |
* | 1.25.5t1.a.d | $1$ | $ 5^{2}$ | 5.5.390625.1 | $C_5$ (as 5T1) | $0$ | $1$ |
* | 1.25.20t1.a.b | $1$ | $ 5^{2}$ | \(\Q(\zeta_{25})\) | $C_{20}$ (as 20T1) | $0$ | $-1$ |
* | 1.25.10t1.a.a | $1$ | $ 5^{2}$ | \(\Q(\zeta_{25})^+\) | $C_{10}$ (as 10T1) | $0$ | $1$ |
* | 1.25.20t1.a.g | $1$ | $ 5^{2}$ | \(\Q(\zeta_{25})\) | $C_{20}$ (as 20T1) | $0$ | $-1$ |