sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(875, base_ring=CyclotomicField(50))
M = H._module
chi = DirichletCharacter(H, M([33,25]))
pari:[g,chi] = znchar(Mod(839,875))
| Modulus: | \(875\) | |
| Conductor: | \(875\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(50\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{875}(34,\cdot)\)
\(\chi_{875}(69,\cdot)\)
\(\chi_{875}(104,\cdot)\)
\(\chi_{875}(139,\cdot)\)
\(\chi_{875}(209,\cdot)\)
\(\chi_{875}(244,\cdot)\)
\(\chi_{875}(279,\cdot)\)
\(\chi_{875}(314,\cdot)\)
\(\chi_{875}(384,\cdot)\)
\(\chi_{875}(419,\cdot)\)
\(\chi_{875}(454,\cdot)\)
\(\chi_{875}(489,\cdot)\)
\(\chi_{875}(559,\cdot)\)
\(\chi_{875}(594,\cdot)\)
\(\chi_{875}(629,\cdot)\)
\(\chi_{875}(664,\cdot)\)
\(\chi_{875}(734,\cdot)\)
\(\chi_{875}(769,\cdot)\)
\(\chi_{875}(804,\cdot)\)
\(\chi_{875}(839,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((127,626)\) → \((e\left(\frac{33}{50}\right),-1)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) | \(16\) |
| \( \chi_{ 875 }(839, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{33}{50}\right)\) | \(e\left(\frac{3}{25}\right)\) | \(e\left(\frac{8}{25}\right)\) | \(e\left(\frac{39}{50}\right)\) | \(e\left(\frac{49}{50}\right)\) | \(e\left(\frac{6}{25}\right)\) | \(e\left(\frac{4}{25}\right)\) | \(e\left(\frac{11}{25}\right)\) | \(e\left(\frac{6}{25}\right)\) | \(e\left(\frac{16}{25}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)