Properties

Label 8550.2783
Modulus $8550$
Conductor $4275$
Order $180$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8550, base_ring=CyclotomicField(180)) M = H._module chi = DirichletCharacter(H, M([30,27,80]))
 
Copy content pari:[g,chi] = znchar(Mod(2783,8550))
 

Basic properties

Modulus: \(8550\)
Conductor: \(4275\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(180\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{4275}(2783,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8550.hi

\(\chi_{8550}(47,\cdot)\) \(\chi_{8550}(137,\cdot)\) \(\chi_{8550}(347,\cdot)\) \(\chi_{8550}(473,\cdot)\) \(\chi_{8550}(833,\cdot)\) \(\chi_{8550}(1073,\cdot)\) \(\chi_{8550}(1127,\cdot)\) \(\chi_{8550}(1163,\cdot)\) \(\chi_{8550}(1373,\cdot)\) \(\chi_{8550}(1517,\cdot)\) \(\chi_{8550}(1847,\cdot)\) \(\chi_{8550}(2153,\cdot)\) \(\chi_{8550}(2183,\cdot)\) \(\chi_{8550}(2783,\cdot)\) \(\chi_{8550}(2837,\cdot)\) \(\chi_{8550}(2867,\cdot)\) \(\chi_{8550}(2873,\cdot)\) \(\chi_{8550}(3083,\cdot)\) \(\chi_{8550}(3227,\cdot)\) \(\chi_{8550}(3467,\cdot)\) \(\chi_{8550}(3767,\cdot)\) \(\chi_{8550}(3863,\cdot)\) \(\chi_{8550}(4253,\cdot)\) \(\chi_{8550}(4547,\cdot)\) \(\chi_{8550}(4577,\cdot)\) \(\chi_{8550}(4583,\cdot)\) \(\chi_{8550}(4937,\cdot)\) \(\chi_{8550}(5177,\cdot)\) \(\chi_{8550}(5267,\cdot)\) \(\chi_{8550}(5477,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{180})$
Fixed field: Number field defined by a degree 180 polynomial (not computed)

Values on generators

\((1901,1027,1351)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{3}{20}\right),e\left(\frac{4}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 8550 }(2783, a) \) \(1\)\(1\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{73}{180}\right)\)\(e\left(\frac{161}{180}\right)\)\(e\left(\frac{67}{180}\right)\)\(e\left(\frac{1}{45}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{7}{20}\right)\)\(e\left(\frac{19}{90}\right)\)\(e\left(\frac{1}{36}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8550 }(2783,a) \;\) at \(\;a = \) e.g. 2