Properties

Label 8550.hi
Modulus $8550$
Conductor $4275$
Order $180$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8550, base_ring=CyclotomicField(180)) M = H._module chi = DirichletCharacter(H, M([30,153,80])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(47,8550)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8550\)
Conductor: \(4275\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(180\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 4275.hi
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{180})$
Fixed field: Number field defined by a degree 180 polynomial (not computed)

First 31 of 48 characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(11\) \(13\) \(17\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{8550}(47,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{127}{180}\right)\) \(e\left(\frac{179}{180}\right)\) \(e\left(\frac{13}{180}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{1}{90}\right)\) \(e\left(\frac{19}{36}\right)\)
\(\chi_{8550}(137,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{79}{180}\right)\) \(e\left(\frac{83}{180}\right)\) \(e\left(\frac{1}{180}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{7}{90}\right)\) \(e\left(\frac{7}{36}\right)\)
\(\chi_{8550}(347,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{47}{180}\right)\) \(e\left(\frac{79}{180}\right)\) \(e\left(\frac{53}{180}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{11}{90}\right)\) \(e\left(\frac{11}{36}\right)\)
\(\chi_{8550}(473,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{161}{180}\right)\) \(e\left(\frac{37}{180}\right)\) \(e\left(\frac{59}{180}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{53}{90}\right)\) \(e\left(\frac{17}{36}\right)\)
\(\chi_{8550}(833,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{113}{180}\right)\) \(e\left(\frac{121}{180}\right)\) \(e\left(\frac{47}{180}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{59}{90}\right)\) \(e\left(\frac{5}{36}\right)\)
\(\chi_{8550}(1073,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{180}\right)\) \(e\left(\frac{17}{180}\right)\) \(e\left(\frac{139}{180}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{73}{90}\right)\) \(e\left(\frac{1}{36}\right)\)
\(\chi_{8550}(1127,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{31}{180}\right)\) \(e\left(\frac{167}{180}\right)\) \(e\left(\frac{169}{180}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{13}{90}\right)\) \(e\left(\frac{31}{36}\right)\)
\(\chi_{8550}(1163,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{169}{180}\right)\) \(e\left(\frac{173}{180}\right)\) \(e\left(\frac{91}{180}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{7}{90}\right)\) \(e\left(\frac{25}{36}\right)\)
\(\chi_{8550}(1373,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{101}{180}\right)\) \(e\left(\frac{97}{180}\right)\) \(e\left(\frac{179}{180}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{83}{90}\right)\) \(e\left(\frac{29}{36}\right)\)
\(\chi_{8550}(1517,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{23}{180}\right)\) \(e\left(\frac{31}{180}\right)\) \(e\left(\frac{137}{180}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{59}{90}\right)\) \(e\left(\frac{23}{36}\right)\)
\(\chi_{8550}(1847,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{7}{180}\right)\) \(e\left(\frac{119}{180}\right)\) \(e\left(\frac{73}{180}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{61}{90}\right)\) \(e\left(\frac{7}{36}\right)\)
\(\chi_{8550}(2153,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{157}{180}\right)\) \(e\left(\frac{149}{180}\right)\) \(e\left(\frac{43}{180}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{31}{90}\right)\) \(e\left(\frac{13}{36}\right)\)
\(\chi_{8550}(2183,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{53}{180}\right)\) \(e\left(\frac{1}{180}\right)\) \(e\left(\frac{167}{180}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{89}{90}\right)\) \(e\left(\frac{17}{36}\right)\)
\(\chi_{8550}(2783,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{73}{180}\right)\) \(e\left(\frac{161}{180}\right)\) \(e\left(\frac{67}{180}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{19}{90}\right)\) \(e\left(\frac{1}{36}\right)\)
\(\chi_{8550}(2837,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{139}{180}\right)\) \(e\left(\frac{23}{180}\right)\) \(e\left(\frac{61}{180}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{67}{90}\right)\) \(e\left(\frac{31}{36}\right)\)
\(\chi_{8550}(2867,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{143}{180}\right)\) \(e\left(\frac{91}{180}\right)\) \(e\left(\frac{77}{180}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{89}{90}\right)\) \(e\left(\frac{35}{36}\right)\)
\(\chi_{8550}(2873,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{61}{180}\right)\) \(e\left(\frac{137}{180}\right)\) \(e\left(\frac{19}{180}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{43}{90}\right)\) \(e\left(\frac{25}{36}\right)\)
\(\chi_{8550}(3083,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{173}{180}\right)\) \(e\left(\frac{61}{180}\right)\) \(e\left(\frac{107}{180}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{29}{90}\right)\) \(e\left(\frac{29}{36}\right)\)
\(\chi_{8550}(3227,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{131}{180}\right)\) \(e\left(\frac{67}{180}\right)\) \(e\left(\frac{29}{180}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{23}{90}\right)\) \(e\left(\frac{23}{36}\right)\)
\(\chi_{8550}(3467,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{163}{180}\right)\) \(e\left(\frac{71}{180}\right)\) \(e\left(\frac{157}{180}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{19}{90}\right)\) \(e\left(\frac{19}{36}\right)\)
\(\chi_{8550}(3767,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{83}{180}\right)\) \(e\left(\frac{151}{180}\right)\) \(e\left(\frac{17}{180}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{29}{90}\right)\) \(e\left(\frac{11}{36}\right)\)
\(\chi_{8550}(3863,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{49}{180}\right)\) \(e\left(\frac{113}{180}\right)\) \(e\left(\frac{151}{180}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{67}{90}\right)\) \(e\left(\frac{13}{36}\right)\)
\(\chi_{8550}(4253,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{77}{180}\right)\) \(e\left(\frac{49}{180}\right)\) \(e\left(\frac{83}{180}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{41}{90}\right)\) \(e\left(\frac{5}{36}\right)\)
\(\chi_{8550}(4547,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{67}{180}\right)\) \(e\left(\frac{59}{180}\right)\) \(e\left(\frac{133}{180}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{31}{90}\right)\) \(e\left(\frac{31}{36}\right)\)
\(\chi_{8550}(4577,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{71}{180}\right)\) \(e\left(\frac{127}{180}\right)\) \(e\left(\frac{149}{180}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{53}{90}\right)\) \(e\left(\frac{35}{36}\right)\)
\(\chi_{8550}(4583,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{133}{180}\right)\) \(e\left(\frac{101}{180}\right)\) \(e\left(\frac{127}{180}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{79}{90}\right)\) \(e\left(\frac{25}{36}\right)\)
\(\chi_{8550}(4937,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{59}{180}\right)\) \(e\left(\frac{103}{180}\right)\) \(e\left(\frac{101}{180}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{77}{90}\right)\) \(e\left(\frac{23}{36}\right)\)
\(\chi_{8550}(5177,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{91}{180}\right)\) \(e\left(\frac{107}{180}\right)\) \(e\left(\frac{49}{180}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{73}{90}\right)\) \(e\left(\frac{19}{36}\right)\)
\(\chi_{8550}(5267,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{43}{180}\right)\) \(e\left(\frac{11}{180}\right)\) \(e\left(\frac{37}{180}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{79}{90}\right)\) \(e\left(\frac{7}{36}\right)\)
\(\chi_{8550}(5477,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{11}{180}\right)\) \(e\left(\frac{7}{180}\right)\) \(e\left(\frac{89}{180}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{83}{90}\right)\) \(e\left(\frac{11}{36}\right)\)
\(\chi_{8550}(5573,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{121}{180}\right)\) \(e\left(\frac{77}{180}\right)\) \(e\left(\frac{79}{180}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{13}{90}\right)\) \(e\left(\frac{13}{36}\right)\)