sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8550, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([0,7,0]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(2053,8550))
         
     
    
  \(\chi_{8550}(1027,\cdot)\)
  \(\chi_{8550}(2053,\cdot)\)
  \(\chi_{8550}(2737,\cdot)\)
  \(\chi_{8550}(3763,\cdot)\)
  \(\chi_{8550}(4447,\cdot)\)
  \(\chi_{8550}(5473,\cdot)\)
  \(\chi_{8550}(7183,\cdot)\)
  \(\chi_{8550}(7867,\cdot)\)
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((1901,1027,1351)\) → \((1,e\left(\frac{7}{20}\right),1)\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |       
    
    
      | \( \chi_{ 8550 }(2053, a) \) | 
      \(-1\) | \(1\) | \(-i\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(i\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)