Properties

Label 8550.1027
Modulus $8550$
Conductor $25$
Order $20$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8550, base_ring=CyclotomicField(20)) M = H._module chi = DirichletCharacter(H, M([0,1,0]))
 
Copy content pari:[g,chi] = znchar(Mod(1027,8550))
 

Basic properties

Modulus: \(8550\)
Conductor: \(25\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(20\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{25}(2,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8550.dt

\(\chi_{8550}(1027,\cdot)\) \(\chi_{8550}(2053,\cdot)\) \(\chi_{8550}(2737,\cdot)\) \(\chi_{8550}(3763,\cdot)\) \(\chi_{8550}(4447,\cdot)\) \(\chi_{8550}(5473,\cdot)\) \(\chi_{8550}(7183,\cdot)\) \(\chi_{8550}(7867,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: Number field defined by a degree 20 polynomial

Values on generators

\((1901,1027,1351)\) → \((1,e\left(\frac{1}{20}\right),1)\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 8550 }(1027, a) \) \(-1\)\(1\)\(i\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{9}{20}\right)\)\(e\left(\frac{1}{5}\right)\)\(-i\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8550 }(1027,a) \;\) at \(\;a = \) e.g. 2