Properties

Label 855.by
Modulus $855$
Conductor $855$
Order $12$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(855, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([10,3,2])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(122,855)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(855\)
Conductor: \(855\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.0.4639259155641920868533203125.2

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(7\) \(8\) \(11\) \(13\) \(14\) \(16\) \(17\) \(22\)
\(\chi_{855}(122,\cdot)\) \(-1\) \(1\) \(i\) \(-1\) \(e\left(\frac{7}{12}\right)\) \(-i\) \(e\left(\frac{5}{6}\right)\) \(i\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{855}(293,\cdot)\) \(-1\) \(1\) \(-i\) \(-1\) \(e\left(\frac{1}{12}\right)\) \(i\) \(e\left(\frac{5}{6}\right)\) \(-i\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{855}(677,\cdot)\) \(-1\) \(1\) \(i\) \(-1\) \(e\left(\frac{11}{12}\right)\) \(-i\) \(e\left(\frac{1}{6}\right)\) \(i\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{855}(848,\cdot)\) \(-1\) \(1\) \(-i\) \(-1\) \(e\left(\frac{5}{12}\right)\) \(i\) \(e\left(\frac{1}{6}\right)\) \(-i\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{12}\right)\)