Properties

Modulus $855$
Structure \(C_{2}\times C_{6}\times C_{36}\)
Order $432$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(855)
 
pari: g = idealstar(,855,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 432
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{2}\times C_{6}\times C_{36}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{855}(191,\cdot)$, $\chi_{855}(172,\cdot)$, $\chi_{855}(496,\cdot)$

First 32 of 432 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(2\) \(4\) \(7\) \(8\) \(11\) \(13\) \(14\) \(16\) \(17\) \(22\)
\(\chi_{855}(1,\cdot)\) 855.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{855}(2,\cdot)\) 855.do 36 yes \(-1\) \(1\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(i\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{11}{36}\right)\)
\(\chi_{855}(4,\cdot)\) 855.cn 18 yes \(1\) \(1\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{855}(7,\cdot)\) 855.bw 12 yes \(-1\) \(1\) \(i\) \(-1\) \(e\left(\frac{11}{12}\right)\) \(-i\) \(e\left(\frac{2}{3}\right)\) \(-i\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{855}(8,\cdot)\) 855.ca 12 no \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(-i\) \(i\) \(-1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{855}(11,\cdot)\) 855.bh 6 no \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\)
\(\chi_{855}(13,\cdot)\) 855.dk 36 yes \(1\) \(1\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(-i\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{1}{36}\right)\)
\(\chi_{855}(14,\cdot)\) 855.cz 18 yes \(1\) \(1\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{2}{9}\right)\)
\(\chi_{855}(16,\cdot)\) 855.bu 9 no \(1\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{2}{9}\right)\)
\(\chi_{855}(17,\cdot)\) 855.dn 36 no \(1\) \(1\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{17}{36}\right)\)
\(\chi_{855}(22,\cdot)\) 855.dq 36 yes \(1\) \(1\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(1\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{11}{36}\right)\)
\(\chi_{855}(23,\cdot)\) 855.dm 36 yes \(1\) \(1\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(-i\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{31}{36}\right)\)
\(\chi_{855}(26,\cdot)\) 855.bn 6 no \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{855}(28,\cdot)\) 855.dj 36 no \(-1\) \(1\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{19}{36}\right)\)
\(\chi_{855}(29,\cdot)\) 855.cz 18 yes \(1\) \(1\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{855}(31,\cdot)\) 855.bf 6 no \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\)
\(\chi_{855}(32,\cdot)\) 855.do 36 yes \(-1\) \(1\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(i\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{19}{36}\right)\)
\(\chi_{855}(34,\cdot)\) 855.cy 18 yes \(-1\) \(1\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{7}{9}\right)\)
\(\chi_{855}(37,\cdot)\) 855.p 4 no \(1\) \(1\) \(-i\) \(-1\) \(i\) \(i\) \(1\) \(i\) \(1\) \(1\) \(i\) \(-i\)
\(\chi_{855}(41,\cdot)\) 855.cp 18 no \(1\) \(1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{18}\right)\)
\(\chi_{855}(43,\cdot)\) 855.di 36 yes \(-1\) \(1\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(-i\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{23}{36}\right)\)
\(\chi_{855}(44,\cdot)\) 855.cx 18 no \(-1\) \(1\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{855}(46,\cdot)\) 855.bo 6 no \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{855}(47,\cdot)\) 855.dh 36 yes \(1\) \(1\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(-1\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{13}{36}\right)\)
\(\chi_{855}(49,\cdot)\) 855.s 6 yes \(1\) \(1\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{855}(52,\cdot)\) 855.dk 36 yes \(1\) \(1\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(i\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{23}{36}\right)\)
\(\chi_{855}(53,\cdot)\) 855.dp 36 no \(-1\) \(1\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{25}{36}\right)\)
\(\chi_{855}(56,\cdot)\) 855.w 6 no \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{855}(58,\cdot)\) 855.cd 12 no \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(-i\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{855}(59,\cdot)\) 855.cz 18 yes \(1\) \(1\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{8}{9}\right)\)
\(\chi_{855}(61,\cdot)\) 855.bt 9 no \(1\) \(1\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{7}{9}\right)\)
\(\chi_{855}(62,\cdot)\) 855.dn 36 no \(1\) \(1\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{29}{36}\right)\)
Click here to search among the remaining 400 characters.