sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(855, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([6,0,5]))
pari:[g,chi] = znchar(Mod(526,855))
\(\chi_{855}(421,\cdot)\)
\(\chi_{855}(526,\cdot)\)
\(\chi_{855}(661,\cdot)\)
\(\chi_{855}(736,\cdot)\)
\(\chi_{855}(751,\cdot)\)
\(\chi_{855}(781,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((191,172,496)\) → \((e\left(\frac{1}{3}\right),1,e\left(\frac{5}{18}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(22\) |
\( \chi_{ 855 }(526, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)