sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8464, base_ring=CyclotomicField(2))
M = H._module
chi = DirichletCharacter(H, M([1,0,1]))
pari:[g,chi] = znchar(Mod(8463,8464))
\(\chi_{8464}(8463,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((7407,2117,6353)\) → \((-1,1,-1)\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
| \( \chi_{ 8464 }(8463, a) \) |
\(1\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(1\) | \(-1\) |
sage:chi.jacobi_sum(n)