Properties

Label 8450.491
Modulus $8450$
Conductor $4225$
Order $390$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8450, base_ring=CyclotomicField(390)) M = H._module chi = DirichletCharacter(H, M([78,205]))
 
Copy content pari:[g,chi] = znchar(Mod(491,8450))
 

Basic properties

Modulus: \(8450\)
Conductor: \(4225\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(390\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{4225}(491,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8450.ct

\(\chi_{8450}(121,\cdot)\) \(\chi_{8450}(231,\cdot)\) \(\chi_{8450}(381,\cdot)\) \(\chi_{8450}(491,\cdot)\) \(\chi_{8450}(511,\cdot)\) \(\chi_{8450}(621,\cdot)\) \(\chi_{8450}(641,\cdot)\) \(\chi_{8450}(771,\cdot)\) \(\chi_{8450}(881,\cdot)\) \(\chi_{8450}(1011,\cdot)\) \(\chi_{8450}(1031,\cdot)\) \(\chi_{8450}(1141,\cdot)\) \(\chi_{8450}(1271,\cdot)\) \(\chi_{8450}(1291,\cdot)\) \(\chi_{8450}(1421,\cdot)\) \(\chi_{8450}(1531,\cdot)\) \(\chi_{8450}(1661,\cdot)\) \(\chi_{8450}(1681,\cdot)\) \(\chi_{8450}(1791,\cdot)\) \(\chi_{8450}(1811,\cdot)\) \(\chi_{8450}(1921,\cdot)\) \(\chi_{8450}(1941,\cdot)\) \(\chi_{8450}(2071,\cdot)\) \(\chi_{8450}(2181,\cdot)\) \(\chi_{8450}(2311,\cdot)\) \(\chi_{8450}(2331,\cdot)\) \(\chi_{8450}(2441,\cdot)\) \(\chi_{8450}(2461,\cdot)\) \(\chi_{8450}(2571,\cdot)\) \(\chi_{8450}(2591,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{195})$
Fixed field: Number field defined by a degree 390 polynomial (not computed)

Values on generators

\((677,3551)\) → \((e\left(\frac{1}{5}\right),e\left(\frac{41}{78}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 8450 }(491, a) \) \(1\)\(1\)\(e\left(\frac{113}{195}\right)\)\(e\left(\frac{19}{78}\right)\)\(e\left(\frac{31}{195}\right)\)\(e\left(\frac{133}{390}\right)\)\(e\left(\frac{67}{195}\right)\)\(e\left(\frac{23}{30}\right)\)\(e\left(\frac{107}{130}\right)\)\(e\left(\frac{8}{15}\right)\)\(e\left(\frac{48}{65}\right)\)\(e\left(\frac{83}{195}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8450 }(491,a) \;\) at \(\;a = \) e.g. 2