sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4225, base_ring=CyclotomicField(390))
M = H._module
chi = DirichletCharacter(H, M([78,205]))
pari:[g,chi] = znchar(Mod(491,4225))
Modulus: | \(4225\) | |
Conductor: | \(4225\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(390\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4225}(36,\cdot)\)
\(\chi_{4225}(56,\cdot)\)
\(\chi_{4225}(121,\cdot)\)
\(\chi_{4225}(166,\cdot)\)
\(\chi_{4225}(186,\cdot)\)
\(\chi_{4225}(231,\cdot)\)
\(\chi_{4225}(296,\cdot)\)
\(\chi_{4225}(381,\cdot)\)
\(\chi_{4225}(446,\cdot)\)
\(\chi_{4225}(491,\cdot)\)
\(\chi_{4225}(511,\cdot)\)
\(\chi_{4225}(556,\cdot)\)
\(\chi_{4225}(621,\cdot)\)
\(\chi_{4225}(641,\cdot)\)
\(\chi_{4225}(686,\cdot)\)
\(\chi_{4225}(706,\cdot)\)
\(\chi_{4225}(771,\cdot)\)
\(\chi_{4225}(816,\cdot)\)
\(\chi_{4225}(836,\cdot)\)
\(\chi_{4225}(881,\cdot)\)
\(\chi_{4225}(946,\cdot)\)
\(\chi_{4225}(966,\cdot)\)
\(\chi_{4225}(1011,\cdot)\)
\(\chi_{4225}(1031,\cdot)\)
\(\chi_{4225}(1096,\cdot)\)
\(\chi_{4225}(1141,\cdot)\)
\(\chi_{4225}(1271,\cdot)\)
\(\chi_{4225}(1291,\cdot)\)
\(\chi_{4225}(1336,\cdot)\)
\(\chi_{4225}(1356,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,3551)\) → \((e\left(\frac{1}{5}\right),e\left(\frac{41}{78}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(14\) |
\( \chi_{ 4225 }(491, a) \) |
\(1\) | \(1\) | \(e\left(\frac{283}{390}\right)\) | \(e\left(\frac{113}{195}\right)\) | \(e\left(\frac{88}{195}\right)\) | \(e\left(\frac{119}{390}\right)\) | \(e\left(\frac{19}{78}\right)\) | \(e\left(\frac{23}{130}\right)\) | \(e\left(\frac{31}{195}\right)\) | \(e\left(\frac{133}{390}\right)\) | \(e\left(\frac{2}{65}\right)\) | \(e\left(\frac{63}{65}\right)\) |
sage:chi.jacobi_sum(n)