Properties

Label 845.42
Modulus $845$
Conductor $845$
Order $156$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(156)) M = H._module chi = DirichletCharacter(H, M([39,76]))
 
Copy content pari:[g,chi] = znchar(Mod(42,845))
 

Basic properties

Modulus: \(845\)
Conductor: \(845\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(156\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 845.bl

\(\chi_{845}(3,\cdot)\) \(\chi_{845}(42,\cdot)\) \(\chi_{845}(48,\cdot)\) \(\chi_{845}(68,\cdot)\) \(\chi_{845}(87,\cdot)\) \(\chi_{845}(107,\cdot)\) \(\chi_{845}(113,\cdot)\) \(\chi_{845}(133,\cdot)\) \(\chi_{845}(152,\cdot)\) \(\chi_{845}(172,\cdot)\) \(\chi_{845}(178,\cdot)\) \(\chi_{845}(198,\cdot)\) \(\chi_{845}(217,\cdot)\) \(\chi_{845}(237,\cdot)\) \(\chi_{845}(243,\cdot)\) \(\chi_{845}(263,\cdot)\) \(\chi_{845}(282,\cdot)\) \(\chi_{845}(302,\cdot)\) \(\chi_{845}(308,\cdot)\) \(\chi_{845}(328,\cdot)\) \(\chi_{845}(347,\cdot)\) \(\chi_{845}(367,\cdot)\) \(\chi_{845}(373,\cdot)\) \(\chi_{845}(393,\cdot)\) \(\chi_{845}(412,\cdot)\) \(\chi_{845}(432,\cdot)\) \(\chi_{845}(438,\cdot)\) \(\chi_{845}(458,\cdot)\) \(\chi_{845}(477,\cdot)\) \(\chi_{845}(497,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{156})$
Fixed field: Number field defined by a degree 156 polynomial (not computed)

Values on generators

\((677,171)\) → \((i,e\left(\frac{19}{39}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(14\)
\( \chi_{ 845 }(42, a) \) \(-1\)\(1\)\(e\left(\frac{115}{156}\right)\)\(e\left(\frac{25}{156}\right)\)\(e\left(\frac{37}{78}\right)\)\(e\left(\frac{35}{39}\right)\)\(e\left(\frac{59}{156}\right)\)\(e\left(\frac{11}{52}\right)\)\(e\left(\frac{25}{78}\right)\)\(e\left(\frac{7}{39}\right)\)\(e\left(\frac{33}{52}\right)\)\(e\left(\frac{3}{26}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 845 }(42,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 845 }(42,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 845 }(42,·),\chi_{ 845 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 845 }(42,·)) \;\) at \(\; a,b = \) e.g. 1,2