L(s) = 1 | + (−0.0804 − 0.996i)2-s + (0.534 + 0.845i)3-s + (−0.987 + 0.160i)4-s + (0.799 − 0.600i)6-s + (−0.721 + 0.692i)7-s + (0.239 + 0.970i)8-s + (−0.428 + 0.903i)9-s + (0.428 + 0.903i)11-s + (−0.663 − 0.748i)12-s + (0.748 + 0.663i)14-s + (0.948 − 0.316i)16-s + (−0.721 + 0.692i)17-s + (0.935 + 0.354i)18-s + (0.5 + 0.866i)19-s + (−0.970 − 0.239i)21-s + (0.866 − 0.5i)22-s + ⋯ |
L(s) = 1 | + (−0.0804 − 0.996i)2-s + (0.534 + 0.845i)3-s + (−0.987 + 0.160i)4-s + (0.799 − 0.600i)6-s + (−0.721 + 0.692i)7-s + (0.239 + 0.970i)8-s + (−0.428 + 0.903i)9-s + (0.428 + 0.903i)11-s + (−0.663 − 0.748i)12-s + (0.748 + 0.663i)14-s + (0.948 − 0.316i)16-s + (−0.721 + 0.692i)17-s + (0.935 + 0.354i)18-s + (0.5 + 0.866i)19-s + (−0.970 − 0.239i)21-s + (0.866 − 0.5i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.758 + 0.652i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.758 + 0.652i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5077545391 + 1.368652607i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5077545391 + 1.368652607i\) |
\(L(1)\) |
\(\approx\) |
\(0.9752311277 + 0.2122041398i\) |
\(L(1)\) |
\(\approx\) |
\(0.9752311277 + 0.2122041398i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.0804 - 0.996i)T \) |
| 3 | \( 1 + (0.534 + 0.845i)T \) |
| 7 | \( 1 + (-0.721 + 0.692i)T \) |
| 11 | \( 1 + (0.428 + 0.903i)T \) |
| 17 | \( 1 + (-0.721 + 0.692i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (0.866 + 0.5i)T \) |
| 29 | \( 1 + (0.996 - 0.0804i)T \) |
| 31 | \( 1 + (0.120 + 0.992i)T \) |
| 37 | \( 1 + (0.391 - 0.919i)T \) |
| 41 | \( 1 + (-0.845 + 0.534i)T \) |
| 43 | \( 1 + (0.391 + 0.919i)T \) |
| 47 | \( 1 + (0.935 - 0.354i)T \) |
| 53 | \( 1 + (0.239 + 0.970i)T \) |
| 59 | \( 1 + (-0.948 - 0.316i)T \) |
| 61 | \( 1 + (0.278 + 0.960i)T \) |
| 67 | \( 1 + (-0.160 + 0.987i)T \) |
| 71 | \( 1 + (-0.0402 - 0.999i)T \) |
| 73 | \( 1 + (-0.822 - 0.568i)T \) |
| 79 | \( 1 + (0.354 + 0.935i)T \) |
| 83 | \( 1 + (-0.464 - 0.885i)T \) |
| 89 | \( 1 + (0.5 - 0.866i)T \) |
| 97 | \( 1 + (-0.979 - 0.200i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.96192022726601863280101139131, −20.580901530835879025423271922122, −19.80575408467200631785793645160, −19.03504487943197264057589607279, −18.49675123170757553765145407339, −17.44869794224588682777736911219, −16.91641874830986390457287649555, −15.94205519817818199592223076102, −15.221897148416665863063510955923, −14.139266184700625421450487999637, −13.60681708913379776811765496243, −13.148432559251591858240748839377, −12.05686740882088754676531400504, −10.9207563911376575206657320783, −9.670857079489829963332379238882, −8.98422397906625192994577378623, −8.26321839986803800890231806114, −7.17280776511988884810460525703, −6.76413382725210176202525572301, −5.96339459841540492329910324208, −4.7062600319401076312496535803, −3.611814111779999912834982888623, −2.728436254088851283786496691887, −0.96691961716607743683650687050, −0.37450931291238257177167535539,
1.461907771983505082275881421, 2.504396079057476558460106542313, 3.2784426825989272980119113552, 4.16415791488162889399301134684, 4.9841153513005680917889661592, 6.049255901656955207542563534470, 7.48414848059364648503608639631, 8.660299617985514823162529623559, 9.13145469533066903958728581289, 9.95532428056286751987535519323, 10.538223042966754750265882560590, 11.61610559503618416055966998706, 12.40854919486894233642980104347, 13.17899292014163363604943335968, 14.13323355976816842764795445373, 14.924217822427063675686167019732, 15.67112459207169543387540282747, 16.6595342636472451985688416461, 17.54493703569493714911979957827, 18.427085030124724650082206028618, 19.49032779732918854885847523279, 19.71725933552745478190910614945, 20.63217761933350365250473941855, 21.45282684218936043160724370324, 21.956184543478742179218047399162