Properties

Label 841.50
Modulus $841$
Conductor $841$
Order $812$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(841, base_ring=CyclotomicField(812)) M = H._module chi = DirichletCharacter(H, M([605]))
 
Copy content pari:[g,chi] = znchar(Mod(50,841))
 

Basic properties

Modulus: \(841\)
Conductor: \(841\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(812\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 841.l

\(\chi_{841}(2,\cdot)\) \(\chi_{841}(3,\cdot)\) \(\chi_{841}(8,\cdot)\) \(\chi_{841}(10,\cdot)\) \(\chi_{841}(11,\cdot)\) \(\chi_{841}(15,\cdot)\) \(\chi_{841}(18,\cdot)\) \(\chi_{841}(19,\cdot)\) \(\chi_{841}(21,\cdot)\) \(\chi_{841}(26,\cdot)\) \(\chi_{841}(27,\cdot)\) \(\chi_{841}(31,\cdot)\) \(\chi_{841}(32,\cdot)\) \(\chi_{841}(37,\cdot)\) \(\chi_{841}(39,\cdot)\) \(\chi_{841}(40,\cdot)\) \(\chi_{841}(43,\cdot)\) \(\chi_{841}(44,\cdot)\) \(\chi_{841}(47,\cdot)\) \(\chi_{841}(48,\cdot)\) \(\chi_{841}(50,\cdot)\) \(\chi_{841}(55,\cdot)\) \(\chi_{841}(56,\cdot)\) \(\chi_{841}(61,\cdot)\) \(\chi_{841}(66,\cdot)\) \(\chi_{841}(68,\cdot)\) \(\chi_{841}(69,\cdot)\) \(\chi_{841}(72,\cdot)\) \(\chi_{841}(73,\cdot)\) \(\chi_{841}(76,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{812})$
Fixed field: Number field defined by a degree 812 polynomial (not computed)

Values on generators

\(2\) → \(e\left(\frac{605}{812}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 841 }(50, a) \) \(-1\)\(1\)\(e\left(\frac{605}{812}\right)\)\(e\left(\frac{85}{812}\right)\)\(e\left(\frac{199}{406}\right)\)\(e\left(\frac{5}{406}\right)\)\(e\left(\frac{345}{406}\right)\)\(e\left(\frac{30}{203}\right)\)\(e\left(\frac{191}{812}\right)\)\(e\left(\frac{85}{406}\right)\)\(e\left(\frac{615}{812}\right)\)\(e\left(\frac{285}{812}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 841 }(50,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 841 }(50,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 841 }(50,·),\chi_{ 841 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 841 }(50,·)) \;\) at \(\; a,b = \) e.g. 1,2