Properties

Label 834.n
Modulus $834$
Conductor $417$
Order $138$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(834, base_ring=CyclotomicField(138)) M = H._module chi = DirichletCharacter(H, M([69,86])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(5,834)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(834\)
Conductor: \(417\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(138\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 417.n
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{69})$
Fixed field: Number field defined by a degree 138 polynomial (not computed)

First 31 of 44 characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\)
\(\chi_{834}(5,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{138}\right)\) \(e\left(\frac{11}{69}\right)\) \(e\left(\frac{119}{138}\right)\) \(e\left(\frac{61}{69}\right)\) \(e\left(\frac{25}{138}\right)\) \(e\left(\frac{1}{69}\right)\) \(e\left(\frac{15}{46}\right)\) \(e\left(\frac{13}{69}\right)\) \(e\left(\frac{11}{138}\right)\) \(e\left(\frac{62}{69}\right)\)
\(\chi_{834}(11,\cdot)\) \(-1\) \(1\) \(e\left(\frac{119}{138}\right)\) \(e\left(\frac{37}{69}\right)\) \(e\left(\frac{49}{138}\right)\) \(e\left(\frac{17}{69}\right)\) \(e\left(\frac{59}{138}\right)\) \(e\left(\frac{41}{69}\right)\) \(e\left(\frac{17}{46}\right)\) \(e\left(\frac{50}{69}\right)\) \(e\left(\frac{37}{138}\right)\) \(e\left(\frac{58}{69}\right)\)
\(\chi_{834}(29,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{138}\right)\) \(e\left(\frac{4}{69}\right)\) \(e\left(\frac{37}{138}\right)\) \(e\left(\frac{41}{69}\right)\) \(e\left(\frac{53}{138}\right)\) \(e\left(\frac{38}{69}\right)\) \(e\left(\frac{41}{46}\right)\) \(e\left(\frac{11}{69}\right)\) \(e\left(\frac{73}{138}\right)\) \(e\left(\frac{10}{69}\right)\)
\(\chi_{834}(35,\cdot)\) \(-1\) \(1\) \(e\left(\frac{35}{138}\right)\) \(e\left(\frac{19}{69}\right)\) \(e\left(\frac{55}{138}\right)\) \(e\left(\frac{5}{69}\right)\) \(e\left(\frac{131}{138}\right)\) \(e\left(\frac{8}{69}\right)\) \(e\left(\frac{5}{46}\right)\) \(e\left(\frac{35}{69}\right)\) \(e\left(\frac{19}{138}\right)\) \(e\left(\frac{13}{69}\right)\)
\(\chi_{834}(41,\cdot)\) \(-1\) \(1\) \(e\left(\frac{61}{138}\right)\) \(e\left(\frac{41}{69}\right)\) \(e\left(\frac{17}{138}\right)\) \(e\left(\frac{58}{69}\right)\) \(e\left(\frac{43}{138}\right)\) \(e\left(\frac{10}{69}\right)\) \(e\left(\frac{35}{46}\right)\) \(e\left(\frac{61}{69}\right)\) \(e\left(\frac{41}{138}\right)\) \(e\left(\frac{68}{69}\right)\)
\(\chi_{834}(47,\cdot)\) \(-1\) \(1\) \(e\left(\frac{79}{138}\right)\) \(e\left(\frac{35}{69}\right)\) \(e\left(\frac{65}{138}\right)\) \(e\left(\frac{31}{69}\right)\) \(e\left(\frac{67}{138}\right)\) \(e\left(\frac{22}{69}\right)\) \(e\left(\frac{31}{46}\right)\) \(e\left(\frac{10}{69}\right)\) \(e\left(\frac{35}{138}\right)\) \(e\left(\frac{53}{69}\right)\)
\(\chi_{834}(71,\cdot)\) \(-1\) \(1\) \(e\left(\frac{59}{138}\right)\) \(e\left(\frac{34}{69}\right)\) \(e\left(\frac{73}{138}\right)\) \(e\left(\frac{38}{69}\right)\) \(e\left(\frac{71}{138}\right)\) \(e\left(\frac{47}{69}\right)\) \(e\left(\frac{15}{46}\right)\) \(e\left(\frac{59}{69}\right)\) \(e\left(\frac{103}{138}\right)\) \(e\left(\frac{16}{69}\right)\)
\(\chi_{834}(83,\cdot)\) \(-1\) \(1\) \(e\left(\frac{73}{138}\right)\) \(e\left(\frac{14}{69}\right)\) \(e\left(\frac{95}{138}\right)\) \(e\left(\frac{40}{69}\right)\) \(e\left(\frac{13}{138}\right)\) \(e\left(\frac{64}{69}\right)\) \(e\left(\frac{17}{46}\right)\) \(e\left(\frac{4}{69}\right)\) \(e\left(\frac{83}{138}\right)\) \(e\left(\frac{35}{69}\right)\)
\(\chi_{834}(89,\cdot)\) \(-1\) \(1\) \(e\left(\frac{43}{138}\right)\) \(e\left(\frac{47}{69}\right)\) \(e\left(\frac{107}{138}\right)\) \(e\left(\frac{16}{69}\right)\) \(e\left(\frac{19}{138}\right)\) \(e\left(\frac{67}{69}\right)\) \(e\left(\frac{39}{46}\right)\) \(e\left(\frac{43}{69}\right)\) \(e\left(\frac{47}{138}\right)\) \(e\left(\frac{14}{69}\right)\)
\(\chi_{834}(107,\cdot)\) \(-1\) \(1\) \(e\left(\frac{85}{138}\right)\) \(e\left(\frac{56}{69}\right)\) \(e\left(\frac{35}{138}\right)\) \(e\left(\frac{22}{69}\right)\) \(e\left(\frac{121}{138}\right)\) \(e\left(\frac{49}{69}\right)\) \(e\left(\frac{45}{46}\right)\) \(e\left(\frac{16}{69}\right)\) \(e\left(\frac{125}{138}\right)\) \(e\left(\frac{2}{69}\right)\)
\(\chi_{834}(113,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{138}\right)\) \(e\left(\frac{38}{69}\right)\) \(e\left(\frac{41}{138}\right)\) \(e\left(\frac{10}{69}\right)\) \(e\left(\frac{55}{138}\right)\) \(e\left(\frac{16}{69}\right)\) \(e\left(\frac{33}{46}\right)\) \(e\left(\frac{1}{69}\right)\) \(e\left(\frac{107}{138}\right)\) \(e\left(\frac{26}{69}\right)\)
\(\chi_{834}(137,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{138}\right)\) \(e\left(\frac{25}{69}\right)\) \(e\left(\frac{7}{138}\right)\) \(e\left(\frac{32}{69}\right)\) \(e\left(\frac{107}{138}\right)\) \(e\left(\frac{65}{69}\right)\) \(e\left(\frac{9}{46}\right)\) \(e\left(\frac{17}{69}\right)\) \(e\left(\frac{25}{138}\right)\) \(e\left(\frac{28}{69}\right)\)
\(\chi_{834}(143,\cdot)\) \(-1\) \(1\) \(e\left(\frac{103}{138}\right)\) \(e\left(\frac{50}{69}\right)\) \(e\left(\frac{83}{138}\right)\) \(e\left(\frac{64}{69}\right)\) \(e\left(\frac{7}{138}\right)\) \(e\left(\frac{61}{69}\right)\) \(e\left(\frac{41}{46}\right)\) \(e\left(\frac{34}{69}\right)\) \(e\left(\frac{119}{138}\right)\) \(e\left(\frac{56}{69}\right)\)
\(\chi_{834}(155,\cdot)\) \(-1\) \(1\) \(e\left(\frac{137}{138}\right)\) \(e\left(\frac{31}{69}\right)\) \(e\left(\frac{97}{138}\right)\) \(e\left(\frac{59}{69}\right)\) \(e\left(\frac{83}{138}\right)\) \(e\left(\frac{53}{69}\right)\) \(e\left(\frac{13}{46}\right)\) \(e\left(\frac{68}{69}\right)\) \(e\left(\frac{31}{138}\right)\) \(e\left(\frac{43}{69}\right)\)
\(\chi_{834}(167,\cdot)\) \(-1\) \(1\) \(e\left(\frac{125}{138}\right)\) \(e\left(\frac{58}{69}\right)\) \(e\left(\frac{19}{138}\right)\) \(e\left(\frac{8}{69}\right)\) \(e\left(\frac{113}{138}\right)\) \(e\left(\frac{68}{69}\right)\) \(e\left(\frac{31}{46}\right)\) \(e\left(\frac{56}{69}\right)\) \(e\left(\frac{127}{138}\right)\) \(e\left(\frac{7}{69}\right)\)
\(\chi_{834}(185,\cdot)\) \(-1\) \(1\) \(e\left(\frac{131}{138}\right)\) \(e\left(\frac{10}{69}\right)\) \(e\left(\frac{127}{138}\right)\) \(e\left(\frac{68}{69}\right)\) \(e\left(\frac{29}{138}\right)\) \(e\left(\frac{26}{69}\right)\) \(e\left(\frac{45}{46}\right)\) \(e\left(\frac{62}{69}\right)\) \(e\left(\frac{79}{138}\right)\) \(e\left(\frac{25}{69}\right)\)
\(\chi_{834}(257,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{138}\right)\) \(e\left(\frac{67}{69}\right)\) \(e\left(\frac{85}{138}\right)\) \(e\left(\frac{14}{69}\right)\) \(e\left(\frac{77}{138}\right)\) \(e\left(\frac{50}{69}\right)\) \(e\left(\frac{37}{46}\right)\) \(e\left(\frac{29}{69}\right)\) \(e\left(\frac{67}{138}\right)\) \(e\left(\frac{64}{69}\right)\)
\(\chi_{834}(263,\cdot)\) \(-1\) \(1\) \(e\left(\frac{89}{138}\right)\) \(e\left(\frac{1}{69}\right)\) \(e\left(\frac{61}{138}\right)\) \(e\left(\frac{62}{69}\right)\) \(e\left(\frac{65}{138}\right)\) \(e\left(\frac{44}{69}\right)\) \(e\left(\frac{39}{46}\right)\) \(e\left(\frac{20}{69}\right)\) \(e\left(\frac{1}{138}\right)\) \(e\left(\frac{37}{69}\right)\)
\(\chi_{834}(275,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{138}\right)\) \(e\left(\frac{59}{69}\right)\) \(e\left(\frac{11}{138}\right)\) \(e\left(\frac{1}{69}\right)\) \(e\left(\frac{109}{138}\right)\) \(e\left(\frac{43}{69}\right)\) \(e\left(\frac{1}{46}\right)\) \(e\left(\frac{7}{69}\right)\) \(e\left(\frac{59}{138}\right)\) \(e\left(\frac{44}{69}\right)\)
\(\chi_{834}(287,\cdot)\) \(-1\) \(1\) \(e\left(\frac{83}{138}\right)\) \(e\left(\frac{49}{69}\right)\) \(e\left(\frac{91}{138}\right)\) \(e\left(\frac{2}{69}\right)\) \(e\left(\frac{11}{138}\right)\) \(e\left(\frac{17}{69}\right)\) \(e\left(\frac{25}{46}\right)\) \(e\left(\frac{14}{69}\right)\) \(e\left(\frac{49}{138}\right)\) \(e\left(\frac{19}{69}\right)\)
\(\chi_{834}(329,\cdot)\) \(-1\) \(1\) \(e\left(\frac{101}{138}\right)\) \(e\left(\frac{43}{69}\right)\) \(e\left(\frac{1}{138}\right)\) \(e\left(\frac{44}{69}\right)\) \(e\left(\frac{35}{138}\right)\) \(e\left(\frac{29}{69}\right)\) \(e\left(\frac{21}{46}\right)\) \(e\left(\frac{32}{69}\right)\) \(e\left(\frac{43}{138}\right)\) \(e\left(\frac{4}{69}\right)\)
\(\chi_{834}(347,\cdot)\) \(-1\) \(1\) \(e\left(\frac{121}{138}\right)\) \(e\left(\frac{44}{69}\right)\) \(e\left(\frac{131}{138}\right)\) \(e\left(\frac{37}{69}\right)\) \(e\left(\frac{31}{138}\right)\) \(e\left(\frac{4}{69}\right)\) \(e\left(\frac{37}{46}\right)\) \(e\left(\frac{52}{69}\right)\) \(e\left(\frac{113}{138}\right)\) \(e\left(\frac{41}{69}\right)\)
\(\chi_{834}(359,\cdot)\) \(-1\) \(1\) \(e\left(\frac{97}{138}\right)\) \(e\left(\frac{29}{69}\right)\) \(e\left(\frac{113}{138}\right)\) \(e\left(\frac{4}{69}\right)\) \(e\left(\frac{91}{138}\right)\) \(e\left(\frac{34}{69}\right)\) \(e\left(\frac{27}{46}\right)\) \(e\left(\frac{28}{69}\right)\) \(e\left(\frac{29}{138}\right)\) \(e\left(\frac{38}{69}\right)\)
\(\chi_{834}(377,\cdot)\) \(-1\) \(1\) \(e\left(\frac{133}{138}\right)\) \(e\left(\frac{17}{69}\right)\) \(e\left(\frac{71}{138}\right)\) \(e\left(\frac{19}{69}\right)\) \(e\left(\frac{1}{138}\right)\) \(e\left(\frac{58}{69}\right)\) \(e\left(\frac{19}{46}\right)\) \(e\left(\frac{64}{69}\right)\) \(e\left(\frac{17}{138}\right)\) \(e\left(\frac{8}{69}\right)\)
\(\chi_{834}(395,\cdot)\) \(-1\) \(1\) \(e\left(\frac{67}{138}\right)\) \(e\left(\frac{62}{69}\right)\) \(e\left(\frac{125}{138}\right)\) \(e\left(\frac{49}{69}\right)\) \(e\left(\frac{97}{138}\right)\) \(e\left(\frac{37}{69}\right)\) \(e\left(\frac{3}{46}\right)\) \(e\left(\frac{67}{69}\right)\) \(e\left(\frac{131}{138}\right)\) \(e\left(\frac{17}{69}\right)\)
\(\chi_{834}(437,\cdot)\) \(-1\) \(1\) \(e\left(\frac{47}{138}\right)\) \(e\left(\frac{61}{69}\right)\) \(e\left(\frac{133}{138}\right)\) \(e\left(\frac{56}{69}\right)\) \(e\left(\frac{101}{138}\right)\) \(e\left(\frac{62}{69}\right)\) \(e\left(\frac{33}{46}\right)\) \(e\left(\frac{47}{69}\right)\) \(e\left(\frac{61}{138}\right)\) \(e\left(\frac{49}{69}\right)\)
\(\chi_{834}(455,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{138}\right)\) \(e\left(\frac{32}{69}\right)\) \(e\left(\frac{89}{138}\right)\) \(e\left(\frac{52}{69}\right)\) \(e\left(\frac{79}{138}\right)\) \(e\left(\frac{28}{69}\right)\) \(e\left(\frac{29}{46}\right)\) \(e\left(\frac{19}{69}\right)\) \(e\left(\frac{101}{138}\right)\) \(e\left(\frac{11}{69}\right)\)
\(\chi_{834}(503,\cdot)\) \(-1\) \(1\) \(e\left(\frac{109}{138}\right)\) \(e\left(\frac{2}{69}\right)\) \(e\left(\frac{53}{138}\right)\) \(e\left(\frac{55}{69}\right)\) \(e\left(\frac{61}{138}\right)\) \(e\left(\frac{19}{69}\right)\) \(e\left(\frac{9}{46}\right)\) \(e\left(\frac{40}{69}\right)\) \(e\left(\frac{71}{138}\right)\) \(e\left(\frac{5}{69}\right)\)
\(\chi_{834}(539,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{138}\right)\) \(e\left(\frac{53}{69}\right)\) \(e\left(\frac{59}{138}\right)\) \(e\left(\frac{43}{69}\right)\) \(e\left(\frac{133}{138}\right)\) \(e\left(\frac{55}{69}\right)\) \(e\left(\frac{43}{46}\right)\) \(e\left(\frac{25}{69}\right)\) \(e\left(\frac{53}{138}\right)\) \(e\left(\frac{29}{69}\right)\)
\(\chi_{834}(563,\cdot)\) \(-1\) \(1\) \(e\left(\frac{91}{138}\right)\) \(e\left(\frac{8}{69}\right)\) \(e\left(\frac{5}{138}\right)\) \(e\left(\frac{13}{69}\right)\) \(e\left(\frac{37}{138}\right)\) \(e\left(\frac{7}{69}\right)\) \(e\left(\frac{13}{46}\right)\) \(e\left(\frac{22}{69}\right)\) \(e\left(\frac{77}{138}\right)\) \(e\left(\frac{20}{69}\right)\)
\(\chi_{834}(569,\cdot)\) \(-1\) \(1\) \(e\left(\frac{53}{138}\right)\) \(e\left(\frac{13}{69}\right)\) \(e\left(\frac{103}{138}\right)\) \(e\left(\frac{47}{69}\right)\) \(e\left(\frac{17}{138}\right)\) \(e\left(\frac{20}{69}\right)\) \(e\left(\frac{1}{46}\right)\) \(e\left(\frac{53}{69}\right)\) \(e\left(\frac{13}{138}\right)\) \(e\left(\frac{67}{69}\right)\)