Properties

Label 834.167
Modulus $834$
Conductor $417$
Order $138$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(834, base_ring=CyclotomicField(138)) M = H._module chi = DirichletCharacter(H, M([69,52]))
 
Copy content pari:[g,chi] = znchar(Mod(167,834))
 

Basic properties

Modulus: \(834\)
Conductor: \(417\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(138\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{417}(167,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 834.n

\(\chi_{834}(5,\cdot)\) \(\chi_{834}(11,\cdot)\) \(\chi_{834}(29,\cdot)\) \(\chi_{834}(35,\cdot)\) \(\chi_{834}(41,\cdot)\) \(\chi_{834}(47,\cdot)\) \(\chi_{834}(71,\cdot)\) \(\chi_{834}(83,\cdot)\) \(\chi_{834}(89,\cdot)\) \(\chi_{834}(107,\cdot)\) \(\chi_{834}(113,\cdot)\) \(\chi_{834}(137,\cdot)\) \(\chi_{834}(143,\cdot)\) \(\chi_{834}(155,\cdot)\) \(\chi_{834}(167,\cdot)\) \(\chi_{834}(185,\cdot)\) \(\chi_{834}(257,\cdot)\) \(\chi_{834}(263,\cdot)\) \(\chi_{834}(275,\cdot)\) \(\chi_{834}(287,\cdot)\) \(\chi_{834}(329,\cdot)\) \(\chi_{834}(347,\cdot)\) \(\chi_{834}(359,\cdot)\) \(\chi_{834}(377,\cdot)\) \(\chi_{834}(395,\cdot)\) \(\chi_{834}(437,\cdot)\) \(\chi_{834}(455,\cdot)\) \(\chi_{834}(503,\cdot)\) \(\chi_{834}(539,\cdot)\) \(\chi_{834}(563,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{69})$
Fixed field: Number field defined by a degree 138 polynomial (not computed)

Values on generators

\((557,697)\) → \((-1,e\left(\frac{26}{69}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\( \chi_{ 834 }(167, a) \) \(-1\)\(1\)\(e\left(\frac{125}{138}\right)\)\(e\left(\frac{58}{69}\right)\)\(e\left(\frac{19}{138}\right)\)\(e\left(\frac{8}{69}\right)\)\(e\left(\frac{113}{138}\right)\)\(e\left(\frac{68}{69}\right)\)\(e\left(\frac{31}{46}\right)\)\(e\left(\frac{56}{69}\right)\)\(e\left(\frac{127}{138}\right)\)\(e\left(\frac{7}{69}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 834 }(167,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 834 }(167,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 834 }(167,·),\chi_{ 834 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 834 }(167,·)) \;\) at \(\; a,b = \) e.g. 1,2