Properties

Label 833.bb
Modulus $833$
Conductor $833$
Order $42$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(833, base_ring=CyclotomicField(42)) M = H._module chi = DirichletCharacter(H, M([41,21])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(33,833)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(833\)
Conductor: \(833\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(42\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: 42.0.8165380551374267651486876056553316266087570018721628631541634242656760638483343855871696919.1

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(8\) \(9\) \(10\) \(11\) \(12\)
\(\chi_{833}(33,\cdot)\) \(-1\) \(1\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{5}{21}\right)\)
\(\chi_{833}(101,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{16}{21}\right)\)
\(\chi_{833}(152,\cdot)\) \(-1\) \(1\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{2}{21}\right)\)
\(\chi_{833}(220,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{4}{21}\right)\)
\(\chi_{833}(271,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{20}{21}\right)\)
\(\chi_{833}(339,\cdot)\) \(-1\) \(1\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{13}{21}\right)\)
\(\chi_{833}(390,\cdot)\) \(-1\) \(1\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{17}{21}\right)\)
\(\chi_{833}(458,\cdot)\) \(-1\) \(1\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{1}{21}\right)\)
\(\chi_{833}(577,\cdot)\) \(-1\) \(1\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{10}{21}\right)\)
\(\chi_{833}(628,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{11}{21}\right)\)
\(\chi_{833}(696,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{19}{21}\right)\)
\(\chi_{833}(747,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{8}{21}\right)\)