Properties

Label 8216.hg
Modulus $8216$
Conductor $8216$
Order $78$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8216, base_ring=CyclotomicField(78)) M = H._module chi = DirichletCharacter(H, M([0,39,26,11])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(29,8216)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8216\)
Conductor: \(8216\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(78\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{39})$
Fixed field: Number field defined by a degree 78 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(15\) \(17\) \(19\) \(21\) \(23\)
\(\chi_{8216}(29,\cdot)\) \(-1\) \(1\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{19}{78}\right)\) \(e\left(\frac{11}{78}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{17}{78}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{53}{78}\right)\) \(e\left(\frac{3}{26}\right)\) \(1\)
\(\chi_{8216}(477,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{23}{78}\right)\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{37}{78}\right)\) \(e\left(\frac{47}{78}\right)\) \(e\left(\frac{19}{78}\right)\) \(e\left(\frac{5}{26}\right)\) \(1\)
\(\chi_{8216}(549,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{67}{78}\right)\) \(e\left(\frac{47}{78}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{23}{78}\right)\) \(e\left(\frac{25}{78}\right)\) \(e\left(\frac{35}{78}\right)\) \(e\left(\frac{1}{26}\right)\) \(1\)
\(\chi_{8216}(581,\cdot)\) \(-1\) \(1\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{77}{78}\right)\) \(e\left(\frac{61}{78}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{73}{78}\right)\) \(e\left(\frac{59}{78}\right)\) \(e\left(\frac{67}{78}\right)\) \(e\left(\frac{19}{26}\right)\) \(1\)
\(\chi_{8216}(1725,\cdot)\) \(-1\) \(1\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{41}{78}\right)\) \(e\left(\frac{73}{78}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{77}{78}\right)\) \(e\left(\frac{61}{78}\right)\) \(e\left(\frac{1}{26}\right)\) \(1\)
\(\chi_{8216}(1933,\cdot)\) \(-1\) \(1\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{47}{78}\right)\) \(e\left(\frac{19}{78}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{35}{78}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{17}{26}\right)\) \(1\)
\(\chi_{8216}(2661,\cdot)\) \(-1\) \(1\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{7}{78}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{25}{78}\right)\) \(e\left(\frac{17}{78}\right)\) \(e\left(\frac{55}{78}\right)\) \(e\left(\frac{9}{26}\right)\) \(1\)
\(\chi_{8216}(2733,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{31}{78}\right)\) \(e\left(\frac{59}{78}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{77}{78}\right)\) \(e\left(\frac{43}{78}\right)\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{9}{26}\right)\) \(1\)
\(\chi_{8216}(3149,\cdot)\) \(-1\) \(1\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{43}{78}\right)\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{59}{78}\right)\) \(e\left(\frac{37}{78}\right)\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{15}{26}\right)\) \(1\)
\(\chi_{8216}(3357,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{25}{78}\right)\) \(e\left(\frac{35}{78}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{47}{78}\right)\) \(e\left(\frac{7}{78}\right)\) \(e\left(\frac{41}{78}\right)\) \(e\left(\frac{19}{26}\right)\) \(1\)
\(\chi_{8216}(3773,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{73}{78}\right)\) \(e\left(\frac{71}{78}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{53}{78}\right)\) \(e\left(\frac{61}{78}\right)\) \(e\left(\frac{23}{78}\right)\) \(e\left(\frac{17}{26}\right)\) \(1\)
\(\chi_{8216}(3877,\cdot)\) \(-1\) \(1\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{37}{78}\right)\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{17}{78}\right)\) \(e\left(\frac{25}{26}\right)\) \(1\)
\(\chi_{8216}(4013,\cdot)\) \(-1\) \(1\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{17}{78}\right)\) \(e\left(\frac{55}{78}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{7}{78}\right)\) \(e\left(\frac{11}{78}\right)\) \(e\left(\frac{31}{78}\right)\) \(e\left(\frac{15}{26}\right)\) \(1\)
\(\chi_{8216}(4221,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{25}{78}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{67}{78}\right)\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{7}{78}\right)\) \(e\left(\frac{21}{26}\right)\) \(1\)
\(\chi_{8216}(4325,\cdot)\) \(-1\) \(1\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{11}{78}\right)\) \(e\left(\frac{31}{78}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{55}{78}\right)\) \(e\left(\frac{53}{78}\right)\) \(e\left(\frac{43}{78}\right)\) \(e\left(\frac{25}{26}\right)\) \(1\)
\(\chi_{8216}(4533,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{59}{78}\right)\) \(e\left(\frac{67}{78}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{61}{78}\right)\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{25}{78}\right)\) \(e\left(\frac{23}{26}\right)\) \(1\)
\(\chi_{8216}(4709,\cdot)\) \(-1\) \(1\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{17}{78}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{19}{78}\right)\) \(e\left(\frac{11}{78}\right)\) \(e\left(\frac{7}{26}\right)\) \(1\)
\(\chi_{8216}(5573,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{35}{78}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{19}{78}\right)\) \(e\left(\frac{41}{78}\right)\) \(e\left(\frac{73}{78}\right)\) \(e\left(\frac{11}{26}\right)\) \(1\)
\(\chi_{8216}(5853,\cdot)\) \(-1\) \(1\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{53}{78}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{11}{78}\right)\) \(e\left(\frac{73}{78}\right)\) \(e\left(\frac{71}{78}\right)\) \(e\left(\frac{5}{26}\right)\) \(1\)
\(\chi_{8216}(6197,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{71}{78}\right)\) \(e\left(\frac{37}{78}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{43}{78}\right)\) \(e\left(\frac{23}{78}\right)\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{3}{26}\right)\) \(1\)
\(\chi_{8216}(6373,\cdot)\) \(-1\) \(1\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{55}{78}\right)\) \(e\left(\frac{77}{78}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{41}{78}\right)\) \(e\left(\frac{31}{78}\right)\) \(e\left(\frac{59}{78}\right)\) \(e\left(\frac{21}{26}\right)\) \(1\)
\(\chi_{8216}(6789,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{61}{78}\right)\) \(e\left(\frac{23}{78}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{71}{78}\right)\) \(e\left(\frac{67}{78}\right)\) \(e\left(\frac{47}{78}\right)\) \(e\left(\frac{11}{26}\right)\) \(1\)
\(\chi_{8216}(7029,\cdot)\) \(-1\) \(1\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{53}{78}\right)\) \(e\left(\frac{43}{78}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{31}{78}\right)\) \(e\left(\frac{71}{78}\right)\) \(e\left(\frac{37}{78}\right)\) \(e\left(\frac{7}{26}\right)\) \(1\)
\(\chi_{8216}(7101,\cdot)\) \(-1\) \(1\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{7}{78}\right)\) \(e\left(\frac{41}{78}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{35}{78}\right)\) \(e\left(\frac{55}{78}\right)\) \(e\left(\frac{77}{78}\right)\) \(e\left(\frac{23}{26}\right)\) \(1\)