sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8216, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([0,39,26,41]))
pari:[g,chi] = znchar(Mod(7101,8216))
| Modulus: | \(8216\) | |
| Conductor: | \(8216\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(78\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{8216}(29,\cdot)\)
\(\chi_{8216}(477,\cdot)\)
\(\chi_{8216}(549,\cdot)\)
\(\chi_{8216}(581,\cdot)\)
\(\chi_{8216}(1725,\cdot)\)
\(\chi_{8216}(1933,\cdot)\)
\(\chi_{8216}(2661,\cdot)\)
\(\chi_{8216}(2733,\cdot)\)
\(\chi_{8216}(3149,\cdot)\)
\(\chi_{8216}(3357,\cdot)\)
\(\chi_{8216}(3773,\cdot)\)
\(\chi_{8216}(3877,\cdot)\)
\(\chi_{8216}(4013,\cdot)\)
\(\chi_{8216}(4221,\cdot)\)
\(\chi_{8216}(4325,\cdot)\)
\(\chi_{8216}(4533,\cdot)\)
\(\chi_{8216}(4709,\cdot)\)
\(\chi_{8216}(5573,\cdot)\)
\(\chi_{8216}(5853,\cdot)\)
\(\chi_{8216}(6197,\cdot)\)
\(\chi_{8216}(6373,\cdot)\)
\(\chi_{8216}(6789,\cdot)\)
\(\chi_{8216}(7029,\cdot)\)
\(\chi_{8216}(7101,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2055,4109,3161,3953)\) → \((1,-1,e\left(\frac{1}{3}\right),e\left(\frac{41}{78}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(15\) | \(17\) | \(19\) | \(21\) | \(23\) |
| \( \chi_{ 8216 }(7101, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{14}{39}\right)\) | \(e\left(\frac{7}{78}\right)\) | \(e\left(\frac{41}{78}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{35}{78}\right)\) | \(e\left(\frac{55}{78}\right)\) | \(e\left(\frac{77}{78}\right)\) | \(e\left(\frac{23}{26}\right)\) | \(1\) |
sage:chi.jacobi_sum(n)