Properties

Label 8112.821
Modulus $8112$
Conductor $8112$
Order $156$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8112, base_ring=CyclotomicField(156)) M = H._module chi = DirichletCharacter(H, M([0,39,78,49]))
 
Copy content pari:[g,chi] = znchar(Mod(821,8112))
 

Basic properties

Modulus: \(8112\)
Conductor: \(8112\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(156\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8112.gd

\(\chi_{8112}(149,\cdot)\) \(\chi_{8112}(197,\cdot)\) \(\chi_{8112}(557,\cdot)\) \(\chi_{8112}(605,\cdot)\) \(\chi_{8112}(773,\cdot)\) \(\chi_{8112}(821,\cdot)\) \(\chi_{8112}(1181,\cdot)\) \(\chi_{8112}(1229,\cdot)\) \(\chi_{8112}(1397,\cdot)\) \(\chi_{8112}(1445,\cdot)\) \(\chi_{8112}(1805,\cdot)\) \(\chi_{8112}(1853,\cdot)\) \(\chi_{8112}(2021,\cdot)\) \(\chi_{8112}(2069,\cdot)\) \(\chi_{8112}(2429,\cdot)\) \(\chi_{8112}(2477,\cdot)\) \(\chi_{8112}(2645,\cdot)\) \(\chi_{8112}(2693,\cdot)\) \(\chi_{8112}(3053,\cdot)\) \(\chi_{8112}(3101,\cdot)\) \(\chi_{8112}(3269,\cdot)\) \(\chi_{8112}(3317,\cdot)\) \(\chi_{8112}(3677,\cdot)\) \(\chi_{8112}(3725,\cdot)\) \(\chi_{8112}(3893,\cdot)\) \(\chi_{8112}(3941,\cdot)\) \(\chi_{8112}(4301,\cdot)\) \(\chi_{8112}(4349,\cdot)\) \(\chi_{8112}(4517,\cdot)\) \(\chi_{8112}(4565,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{156})$
Fixed field: Number field defined by a degree 156 polynomial (not computed)

Values on generators

\((5071,6085,2705,3889)\) → \((1,i,-1,e\left(\frac{49}{156}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 8112 }(821, a) \) \(1\)\(1\)\(e\left(\frac{15}{26}\right)\)\(e\left(\frac{17}{156}\right)\)\(e\left(\frac{4}{39}\right)\)\(e\left(\frac{14}{39}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{2}{13}\right)\)\(e\left(\frac{127}{156}\right)\)\(e\left(\frac{31}{52}\right)\)\(e\left(\frac{107}{156}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8112 }(821,a) \;\) at \(\;a = \) e.g. 2