sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8112, base_ring=CyclotomicField(156))
M = H._module
chi = DirichletCharacter(H, M([0,39,78,49]))
pari:[g,chi] = znchar(Mod(821,8112))
Modulus: | \(8112\) | |
Conductor: | \(8112\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(156\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{8112}(149,\cdot)\)
\(\chi_{8112}(197,\cdot)\)
\(\chi_{8112}(557,\cdot)\)
\(\chi_{8112}(605,\cdot)\)
\(\chi_{8112}(773,\cdot)\)
\(\chi_{8112}(821,\cdot)\)
\(\chi_{8112}(1181,\cdot)\)
\(\chi_{8112}(1229,\cdot)\)
\(\chi_{8112}(1397,\cdot)\)
\(\chi_{8112}(1445,\cdot)\)
\(\chi_{8112}(1805,\cdot)\)
\(\chi_{8112}(1853,\cdot)\)
\(\chi_{8112}(2021,\cdot)\)
\(\chi_{8112}(2069,\cdot)\)
\(\chi_{8112}(2429,\cdot)\)
\(\chi_{8112}(2477,\cdot)\)
\(\chi_{8112}(2645,\cdot)\)
\(\chi_{8112}(2693,\cdot)\)
\(\chi_{8112}(3053,\cdot)\)
\(\chi_{8112}(3101,\cdot)\)
\(\chi_{8112}(3269,\cdot)\)
\(\chi_{8112}(3317,\cdot)\)
\(\chi_{8112}(3677,\cdot)\)
\(\chi_{8112}(3725,\cdot)\)
\(\chi_{8112}(3893,\cdot)\)
\(\chi_{8112}(3941,\cdot)\)
\(\chi_{8112}(4301,\cdot)\)
\(\chi_{8112}(4349,\cdot)\)
\(\chi_{8112}(4517,\cdot)\)
\(\chi_{8112}(4565,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5071,6085,2705,3889)\) → \((1,i,-1,e\left(\frac{49}{156}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 8112 }(821, a) \) |
\(1\) | \(1\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{17}{156}\right)\) | \(e\left(\frac{4}{39}\right)\) | \(e\left(\frac{14}{39}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{127}{156}\right)\) | \(e\left(\frac{31}{52}\right)\) | \(e\left(\frac{107}{156}\right)\) |
sage:chi.jacobi_sum(n)