Properties

Label 8112.gd
Modulus $8112$
Conductor $8112$
Order $156$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8112, base_ring=CyclotomicField(156)) M = H._module chi = DirichletCharacter(H, M([0,39,78,89])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(149,8112)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8112\)
Conductor: \(8112\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(156\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{156})$
Fixed field: Number field defined by a degree 156 polynomial (not computed)

First 31 of 48 characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(35\)
\(\chi_{8112}(149,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{85}{156}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{11}{156}\right)\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{67}{156}\right)\)
\(\chi_{8112}(197,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{41}{156}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{31}{156}\right)\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{47}{156}\right)\)
\(\chi_{8112}(557,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{83}{156}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{97}{156}\right)\) \(e\left(\frac{29}{52}\right)\) \(e\left(\frac{137}{156}\right)\)
\(\chi_{8112}(605,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{151}{156}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{137}{156}\right)\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{97}{156}\right)\)
\(\chi_{8112}(773,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{25}{156}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{95}{156}\right)\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{139}{156}\right)\)
\(\chi_{8112}(821,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{17}{156}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{127}{156}\right)\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{107}{156}\right)\)
\(\chi_{8112}(1181,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{107}{156}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{1}{156}\right)\) \(e\left(\frac{33}{52}\right)\) \(e\left(\frac{77}{156}\right)\)
\(\chi_{8112}(1229,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{55}{156}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{53}{156}\right)\) \(e\left(\frac{33}{52}\right)\) \(e\left(\frac{25}{156}\right)\)
\(\chi_{8112}(1397,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{121}{156}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{23}{156}\right)\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{55}{156}\right)\)
\(\chi_{8112}(1445,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{149}{156}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{67}{156}\right)\) \(e\left(\frac{27}{52}\right)\) \(e\left(\frac{11}{156}\right)\)
\(\chi_{8112}(1805,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{131}{156}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{61}{156}\right)\) \(e\left(\frac{37}{52}\right)\) \(e\left(\frac{17}{156}\right)\)
\(\chi_{8112}(1853,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{115}{156}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{125}{156}\right)\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{109}{156}\right)\)
\(\chi_{8112}(2021,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{61}{156}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{107}{156}\right)\) \(e\left(\frac{47}{52}\right)\) \(e\left(\frac{127}{156}\right)\)
\(\chi_{8112}(2069,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{125}{156}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{7}{156}\right)\) \(e\left(\frac{23}{52}\right)\) \(e\left(\frac{71}{156}\right)\)
\(\chi_{8112}(2429,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{155}{156}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{121}{156}\right)\) \(e\left(\frac{41}{52}\right)\) \(e\left(\frac{113}{156}\right)\)
\(\chi_{8112}(2477,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{19}{156}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{41}{156}\right)\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{37}{156}\right)\)
\(\chi_{8112}(2645,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{1}{156}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{35}{156}\right)\) \(e\left(\frac{11}{52}\right)\) \(e\left(\frac{43}{156}\right)\)
\(\chi_{8112}(2693,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{101}{156}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{103}{156}\right)\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{131}{156}\right)\)
\(\chi_{8112}(3053,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{23}{156}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{25}{156}\right)\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{53}{156}\right)\)
\(\chi_{8112}(3101,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{79}{156}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{113}{156}\right)\) \(e\left(\frac{37}{52}\right)\) \(e\left(\frac{121}{156}\right)\)
\(\chi_{8112}(3269,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{97}{156}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{119}{156}\right)\) \(e\left(\frac{27}{52}\right)\) \(e\left(\frac{115}{156}\right)\)
\(\chi_{8112}(3317,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{77}{156}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{43}{156}\right)\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{35}{156}\right)\)
\(\chi_{8112}(3677,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{47}{156}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{85}{156}\right)\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{149}{156}\right)\)
\(\chi_{8112}(3725,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{139}{156}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{29}{156}\right)\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{49}{156}\right)\)
\(\chi_{8112}(3893,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{37}{156}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{47}{156}\right)\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{31}{156}\right)\)
\(\chi_{8112}(3941,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{53}{156}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{139}{156}\right)\) \(e\left(\frac{11}{52}\right)\) \(e\left(\frac{95}{156}\right)\)
\(\chi_{8112}(4301,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{71}{156}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{145}{156}\right)\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{89}{156}\right)\)
\(\chi_{8112}(4349,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{43}{156}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{101}{156}\right)\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{133}{156}\right)\)
\(\chi_{8112}(4517,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{133}{156}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{131}{156}\right)\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{103}{156}\right)\)
\(\chi_{8112}(4565,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{29}{156}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{79}{156}\right)\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{155}{156}\right)\)
\(\chi_{8112}(4925,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{95}{156}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{49}{156}\right)\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{29}{156}\right)\)