sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8112, base_ring=CyclotomicField(52))
M = H._module
chi = DirichletCharacter(H, M([26,39,26,24]))
pari:[g,chi] = znchar(Mod(6995,8112))
Modulus: | \(8112\) | |
Conductor: | \(8112\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(52\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{8112}(131,\cdot)\)
\(\chi_{8112}(443,\cdot)\)
\(\chi_{8112}(755,\cdot)\)
\(\chi_{8112}(1067,\cdot)\)
\(\chi_{8112}(1379,\cdot)\)
\(\chi_{8112}(2003,\cdot)\)
\(\chi_{8112}(2315,\cdot)\)
\(\chi_{8112}(2627,\cdot)\)
\(\chi_{8112}(2939,\cdot)\)
\(\chi_{8112}(3251,\cdot)\)
\(\chi_{8112}(3563,\cdot)\)
\(\chi_{8112}(3875,\cdot)\)
\(\chi_{8112}(4187,\cdot)\)
\(\chi_{8112}(4499,\cdot)\)
\(\chi_{8112}(4811,\cdot)\)
\(\chi_{8112}(5123,\cdot)\)
\(\chi_{8112}(5435,\cdot)\)
\(\chi_{8112}(6059,\cdot)\)
\(\chi_{8112}(6371,\cdot)\)
\(\chi_{8112}(6683,\cdot)\)
\(\chi_{8112}(6995,\cdot)\)
\(\chi_{8112}(7307,\cdot)\)
\(\chi_{8112}(7619,\cdot)\)
\(\chi_{8112}(7931,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5071,6085,2705,3889)\) → \((-1,-i,-1,e\left(\frac{6}{13}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 8112 }(6995, a) \) |
\(1\) | \(1\) | \(e\left(\frac{21}{52}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{15}{52}\right)\) | \(e\left(\frac{23}{26}\right)\) | \(-i\) | \(-1\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{11}{52}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{41}{52}\right)\) |
sage:chi.jacobi_sum(n)