Properties

Label 8112.3563
Modulus $8112$
Conductor $8112$
Order $52$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8112, base_ring=CyclotomicField(52)) M = H._module chi = DirichletCharacter(H, M([26,13,26,36]))
 
Copy content pari:[g,chi] = znchar(Mod(3563,8112))
 

Basic properties

Modulus: \(8112\)
Conductor: \(8112\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(52\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8112.dz

\(\chi_{8112}(131,\cdot)\) \(\chi_{8112}(443,\cdot)\) \(\chi_{8112}(755,\cdot)\) \(\chi_{8112}(1067,\cdot)\) \(\chi_{8112}(1379,\cdot)\) \(\chi_{8112}(2003,\cdot)\) \(\chi_{8112}(2315,\cdot)\) \(\chi_{8112}(2627,\cdot)\) \(\chi_{8112}(2939,\cdot)\) \(\chi_{8112}(3251,\cdot)\) \(\chi_{8112}(3563,\cdot)\) \(\chi_{8112}(3875,\cdot)\) \(\chi_{8112}(4187,\cdot)\) \(\chi_{8112}(4499,\cdot)\) \(\chi_{8112}(4811,\cdot)\) \(\chi_{8112}(5123,\cdot)\) \(\chi_{8112}(5435,\cdot)\) \(\chi_{8112}(6059,\cdot)\) \(\chi_{8112}(6371,\cdot)\) \(\chi_{8112}(6683,\cdot)\) \(\chi_{8112}(6995,\cdot)\) \(\chi_{8112}(7307,\cdot)\) \(\chi_{8112}(7619,\cdot)\) \(\chi_{8112}(7931,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{52})$
Fixed field: Number field defined by a degree 52 polynomial

Values on generators

\((5071,6085,2705,3889)\) → \((-1,i,-1,e\left(\frac{9}{13}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 8112 }(3563, a) \) \(1\)\(1\)\(e\left(\frac{51}{52}\right)\)\(e\left(\frac{1}{13}\right)\)\(e\left(\frac{29}{52}\right)\)\(e\left(\frac{15}{26}\right)\)\(i\)\(-1\)\(e\left(\frac{25}{26}\right)\)\(e\left(\frac{49}{52}\right)\)\(e\left(\frac{1}{26}\right)\)\(e\left(\frac{3}{52}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8112 }(3563,a) \;\) at \(\;a = \) e.g. 2