Properties

Label 8112.6673
Modulus $8112$
Conductor $169$
Order $78$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8112, base_ring=CyclotomicField(78)) M = H._module chi = DirichletCharacter(H, M([0,0,0,43]))
 
Copy content pari:[g,chi] = znchar(Mod(6673,8112))
 

Basic properties

Modulus: \(8112\)
Conductor: \(169\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(78\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{169}(82,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8112.ez

\(\chi_{8112}(49,\cdot)\) \(\chi_{8112}(433,\cdot)\) \(\chi_{8112}(673,\cdot)\) \(\chi_{8112}(1057,\cdot)\) \(\chi_{8112}(1297,\cdot)\) \(\chi_{8112}(1681,\cdot)\) \(\chi_{8112}(1921,\cdot)\) \(\chi_{8112}(2305,\cdot)\) \(\chi_{8112}(2545,\cdot)\) \(\chi_{8112}(2929,\cdot)\) \(\chi_{8112}(3169,\cdot)\) \(\chi_{8112}(3553,\cdot)\) \(\chi_{8112}(3793,\cdot)\) \(\chi_{8112}(4177,\cdot)\) \(\chi_{8112}(4801,\cdot)\) \(\chi_{8112}(5041,\cdot)\) \(\chi_{8112}(5425,\cdot)\) \(\chi_{8112}(5665,\cdot)\) \(\chi_{8112}(6049,\cdot)\) \(\chi_{8112}(6289,\cdot)\) \(\chi_{8112}(6673,\cdot)\) \(\chi_{8112}(6913,\cdot)\) \(\chi_{8112}(7297,\cdot)\) \(\chi_{8112}(7537,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{39})$
Fixed field: Number field defined by a degree 78 polynomial

Values on generators

\((5071,6085,2705,3889)\) → \((1,1,1,e\left(\frac{43}{78}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 8112 }(6673, a) \) \(1\)\(1\)\(e\left(\frac{25}{26}\right)\)\(e\left(\frac{77}{78}\right)\)\(e\left(\frac{61}{78}\right)\)\(e\left(\frac{19}{39}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{12}{13}\right)\)\(e\left(\frac{2}{39}\right)\)\(e\left(\frac{15}{26}\right)\)\(e\left(\frac{37}{39}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8112 }(6673,a) \;\) at \(\;a = \) e.g. 2