Properties

Label 8112.ez
Modulus $8112$
Conductor $169$
Order $78$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8112, base_ring=CyclotomicField(78)) M = H._module chi = DirichletCharacter(H, M([0,0,0,29])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(49,8112)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8112\)
Conductor: \(169\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(78\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 169.k
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{39})$
Fixed field: Number field defined by a degree 78 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(35\)
\(\chi_{8112}(49,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{61}{78}\right)\) \(e\left(\frac{23}{78}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{5}{39}\right)\)
\(\chi_{8112}(433,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{59}{78}\right)\) \(e\left(\frac{67}{78}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{1}{39}\right)\)
\(\chi_{8112}(673,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{43}{78}\right)\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{8}{39}\right)\)
\(\chi_{8112}(1057,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{53}{78}\right)\) \(e\left(\frac{43}{78}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{28}{39}\right)\)
\(\chi_{8112}(1297,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{25}{78}\right)\) \(e\left(\frac{35}{78}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{11}{39}\right)\)
\(\chi_{8112}(1681,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{47}{78}\right)\) \(e\left(\frac{19}{78}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{16}{39}\right)\)
\(\chi_{8112}(1921,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{7}{78}\right)\) \(e\left(\frac{41}{78}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{14}{39}\right)\)
\(\chi_{8112}(2305,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{41}{78}\right)\) \(e\left(\frac{73}{78}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{4}{39}\right)\)
\(\chi_{8112}(2545,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{67}{78}\right)\) \(e\left(\frac{47}{78}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{17}{39}\right)\)
\(\chi_{8112}(2929,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{35}{78}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{31}{39}\right)\)
\(\chi_{8112}(3169,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{53}{78}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{20}{39}\right)\)
\(\chi_{8112}(3553,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{25}{78}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{19}{39}\right)\)
\(\chi_{8112}(3793,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{31}{78}\right)\) \(e\left(\frac{59}{78}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{23}{39}\right)\)
\(\chi_{8112}(4177,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{23}{78}\right)\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{7}{39}\right)\)
\(\chi_{8112}(4801,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{17}{78}\right)\) \(e\left(\frac{55}{78}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{34}{39}\right)\)
\(\chi_{8112}(5041,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{73}{78}\right)\) \(e\left(\frac{71}{78}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{29}{39}\right)\)
\(\chi_{8112}(5425,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{11}{78}\right)\) \(e\left(\frac{31}{78}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{22}{39}\right)\)
\(\chi_{8112}(5665,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{55}{78}\right)\) \(e\left(\frac{77}{78}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{32}{39}\right)\)
\(\chi_{8112}(6049,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{7}{78}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{10}{39}\right)\)
\(\chi_{8112}(6289,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{37}{78}\right)\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{35}{39}\right)\)
\(\chi_{8112}(6673,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{77}{78}\right)\) \(e\left(\frac{61}{78}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{37}{39}\right)\)
\(\chi_{8112}(6913,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{19}{78}\right)\) \(e\left(\frac{11}{78}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{38}{39}\right)\)
\(\chi_{8112}(7297,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{71}{78}\right)\) \(e\left(\frac{37}{78}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{25}{39}\right)\)
\(\chi_{8112}(7537,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{17}{78}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{2}{39}\right)\)