Properties

Label 8112.305
Modulus $8112$
Conductor $507$
Order $156$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8112, base_ring=CyclotomicField(156)) M = H._module chi = DirichletCharacter(H, M([0,0,78,149]))
 
Copy content pari:[g,chi] = znchar(Mod(305,8112))
 

Basic properties

Modulus: \(8112\)
Conductor: \(507\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(156\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{507}(305,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8112.fs

\(\chi_{8112}(305,\cdot)\) \(\chi_{8112}(353,\cdot)\) \(\chi_{8112}(401,\cdot)\) \(\chi_{8112}(449,\cdot)\) \(\chi_{8112}(929,\cdot)\) \(\chi_{8112}(977,\cdot)\) \(\chi_{8112}(1025,\cdot)\) \(\chi_{8112}(1073,\cdot)\) \(\chi_{8112}(1553,\cdot)\) \(\chi_{8112}(1649,\cdot)\) \(\chi_{8112}(1697,\cdot)\) \(\chi_{8112}(2177,\cdot)\) \(\chi_{8112}(2225,\cdot)\) \(\chi_{8112}(2273,\cdot)\) \(\chi_{8112}(2321,\cdot)\) \(\chi_{8112}(2801,\cdot)\) \(\chi_{8112}(2849,\cdot)\) \(\chi_{8112}(2897,\cdot)\) \(\chi_{8112}(2945,\cdot)\) \(\chi_{8112}(3425,\cdot)\) \(\chi_{8112}(3473,\cdot)\) \(\chi_{8112}(3521,\cdot)\) \(\chi_{8112}(3569,\cdot)\) \(\chi_{8112}(4049,\cdot)\) \(\chi_{8112}(4097,\cdot)\) \(\chi_{8112}(4193,\cdot)\) \(\chi_{8112}(4673,\cdot)\) \(\chi_{8112}(4721,\cdot)\) \(\chi_{8112}(4769,\cdot)\) \(\chi_{8112}(4817,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{156})$
Fixed field: Number field defined by a degree 156 polynomial (not computed)

Values on generators

\((5071,6085,2705,3889)\) → \((1,1,-1,e\left(\frac{149}{156}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 8112 }(305, a) \) \(1\)\(1\)\(e\left(\frac{5}{52}\right)\)\(e\left(\frac{31}{156}\right)\)\(e\left(\frac{137}{156}\right)\)\(e\left(\frac{37}{39}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{5}{26}\right)\)\(e\left(\frac{55}{78}\right)\)\(e\left(\frac{3}{52}\right)\)\(e\left(\frac{23}{78}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8112 }(305,a) \;\) at \(\;a = \) e.g. 2