Properties

Label 8112.fs
Modulus $8112$
Conductor $507$
Order $156$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8112, base_ring=CyclotomicField(156)) M = H._module chi = DirichletCharacter(H, M([0,0,78,149])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(305,8112)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8112\)
Conductor: \(507\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(156\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 507.x
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{156})$
Fixed field: Number field defined by a degree 156 polynomial (not computed)

First 31 of 48 characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(35\)
\(\chi_{8112}(305,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{31}{156}\right)\) \(e\left(\frac{137}{156}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{55}{78}\right)\) \(e\left(\frac{3}{52}\right)\) \(e\left(\frac{23}{78}\right)\)
\(\chi_{8112}(353,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{35}{156}\right)\) \(e\left(\frac{49}{156}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{47}{78}\right)\) \(e\left(\frac{47}{52}\right)\) \(e\left(\frac{31}{78}\right)\)
\(\chi_{8112}(401,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{77}{156}\right)\) \(e\left(\frac{139}{156}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{41}{78}\right)\) \(e\left(\frac{41}{52}\right)\) \(e\left(\frac{37}{78}\right)\)
\(\chi_{8112}(449,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{97}{156}\right)\) \(e\left(\frac{11}{156}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{77}{78}\right)\)
\(\chi_{8112}(929,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{127}{156}\right)\) \(e\left(\frac{53}{156}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{19}{78}\right)\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{59}{78}\right)\)
\(\chi_{8112}(977,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{52}\right)\) \(e\left(\frac{11}{156}\right)\) \(e\left(\frac{109}{156}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{17}{78}\right)\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{61}{78}\right)\)
\(\chi_{8112}(1025,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{52}\right)\) \(e\left(\frac{101}{156}\right)\) \(e\left(\frac{79}{156}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{71}{78}\right)\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{7}{78}\right)\)
\(\chi_{8112}(1073,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{52}\right)\) \(e\left(\frac{1}{156}\right)\) \(e\left(\frac{95}{156}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{37}{78}\right)\) \(e\left(\frac{37}{52}\right)\) \(e\left(\frac{41}{78}\right)\)
\(\chi_{8112}(1553,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{52}\right)\) \(e\left(\frac{67}{156}\right)\) \(e\left(\frac{125}{156}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{61}{78}\right)\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{17}{78}\right)\)
\(\chi_{8112}(1649,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{52}\right)\) \(e\left(\frac{125}{156}\right)\) \(e\left(\frac{19}{156}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{23}{78}\right)\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{55}{78}\right)\)
\(\chi_{8112}(1697,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{61}{156}\right)\) \(e\left(\frac{23}{156}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{73}{78}\right)\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{5}{78}\right)\)
\(\chi_{8112}(2177,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{52}\right)\) \(e\left(\frac{7}{156}\right)\) \(e\left(\frac{41}{156}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{25}{78}\right)\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{53}{78}\right)\)
\(\chi_{8112}(2225,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{52}\right)\) \(e\left(\frac{119}{156}\right)\) \(e\left(\frac{73}{156}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{35}{78}\right)\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{43}{78}\right)\)
\(\chi_{8112}(2273,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{149}{156}\right)\) \(e\left(\frac{115}{156}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{53}{78}\right)\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{25}{78}\right)\)
\(\chi_{8112}(2321,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{121}{156}\right)\) \(e\left(\frac{107}{156}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{31}{78}\right)\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{47}{78}\right)\)
\(\chi_{8112}(2801,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{52}\right)\) \(e\left(\frac{103}{156}\right)\) \(e\left(\frac{113}{156}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{67}{78}\right)\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{11}{78}\right)\)
\(\chi_{8112}(2849,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{95}{156}\right)\) \(e\left(\frac{133}{156}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{73}{78}\right)\)
\(\chi_{8112}(2897,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{17}{156}\right)\) \(e\left(\frac{55}{156}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{73}{78}\right)\)
\(\chi_{8112}(2945,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{25}{156}\right)\) \(e\left(\frac{35}{156}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{67}{78}\right)\) \(e\left(\frac{41}{52}\right)\) \(e\left(\frac{11}{78}\right)\)
\(\chi_{8112}(3425,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{43}{156}\right)\) \(e\left(\frac{29}{156}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{31}{78}\right)\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{47}{78}\right)\)
\(\chi_{8112}(3473,\cdot)\) \(1\) \(1\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{71}{156}\right)\) \(e\left(\frac{37}{156}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{53}{78}\right)\) \(e\left(\frac{27}{52}\right)\) \(e\left(\frac{25}{78}\right)\)
\(\chi_{8112}(3521,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{41}{156}\right)\) \(e\left(\frac{151}{156}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{35}{78}\right)\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{43}{78}\right)\)
\(\chi_{8112}(3569,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{85}{156}\right)\) \(e\left(\frac{119}{156}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{25}{78}\right)\) \(e\left(\frac{25}{52}\right)\) \(e\left(\frac{53}{78}\right)\)
\(\chi_{8112}(4049,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{139}{156}\right)\) \(e\left(\frac{101}{156}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{73}{78}\right)\) \(e\left(\frac{47}{52}\right)\) \(e\left(\frac{5}{78}\right)\)
\(\chi_{8112}(4097,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{47}{156}\right)\) \(e\left(\frac{97}{156}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{23}{78}\right)\) \(e\left(\frac{23}{52}\right)\) \(e\left(\frac{55}{78}\right)\)
\(\chi_{8112}(4193,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{145}{156}\right)\) \(e\left(\frac{47}{156}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{61}{78}\right)\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{17}{78}\right)\)
\(\chi_{8112}(4673,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{79}{156}\right)\) \(e\left(\frac{17}{156}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{37}{78}\right)\) \(e\left(\frac{11}{52}\right)\) \(e\left(\frac{41}{78}\right)\)
\(\chi_{8112}(4721,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{23}{156}\right)\) \(e\left(\frac{1}{156}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{71}{78}\right)\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{7}{78}\right)\)
\(\chi_{8112}(4769,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{52}\right)\) \(e\left(\frac{89}{156}\right)\) \(e\left(\frac{31}{156}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{17}{78}\right)\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{61}{78}\right)\)
\(\chi_{8112}(4817,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{52}\right)\) \(e\left(\frac{49}{156}\right)\) \(e\left(\frac{131}{156}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{19}{78}\right)\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{59}{78}\right)\)
\(\chi_{8112}(5297,\cdot)\) \(1\) \(1\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{19}{156}\right)\) \(e\left(\frac{89}{156}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{27}{52}\right)\) \(e\left(\frac{77}{78}\right)\)