Properties

Label 8112.2333
Modulus $8112$
Conductor $8112$
Order $156$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8112, base_ring=CyclotomicField(156)) M = H._module chi = DirichletCharacter(H, M([0,117,78,149]))
 
Copy content pari:[g,chi] = znchar(Mod(2333,8112))
 

Basic properties

Modulus: \(8112\)
Conductor: \(8112\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(156\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8112.fh

\(\chi_{8112}(245,\cdot)\) \(\chi_{8112}(293,\cdot)\) \(\chi_{8112}(461,\cdot)\) \(\chi_{8112}(509,\cdot)\) \(\chi_{8112}(869,\cdot)\) \(\chi_{8112}(917,\cdot)\) \(\chi_{8112}(1085,\cdot)\) \(\chi_{8112}(1133,\cdot)\) \(\chi_{8112}(1493,\cdot)\) \(\chi_{8112}(1541,\cdot)\) \(\chi_{8112}(1757,\cdot)\) \(\chi_{8112}(2165,\cdot)\) \(\chi_{8112}(2333,\cdot)\) \(\chi_{8112}(2381,\cdot)\) \(\chi_{8112}(2741,\cdot)\) \(\chi_{8112}(2789,\cdot)\) \(\chi_{8112}(2957,\cdot)\) \(\chi_{8112}(3005,\cdot)\) \(\chi_{8112}(3365,\cdot)\) \(\chi_{8112}(3413,\cdot)\) \(\chi_{8112}(3581,\cdot)\) \(\chi_{8112}(3989,\cdot)\) \(\chi_{8112}(4205,\cdot)\) \(\chi_{8112}(4253,\cdot)\) \(\chi_{8112}(4613,\cdot)\) \(\chi_{8112}(4661,\cdot)\) \(\chi_{8112}(4829,\cdot)\) \(\chi_{8112}(4877,\cdot)\) \(\chi_{8112}(5237,\cdot)\) \(\chi_{8112}(5285,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{156})$
Fixed field: Number field defined by a degree 156 polynomial (not computed)

Values on generators

\((5071,6085,2705,3889)\) → \((1,-i,-1,e\left(\frac{149}{156}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 8112 }(2333, a) \) \(1\)\(1\)\(e\left(\frac{11}{13}\right)\)\(e\left(\frac{109}{156}\right)\)\(e\left(\frac{49}{78}\right)\)\(e\left(\frac{37}{39}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{9}{13}\right)\)\(e\left(\frac{149}{156}\right)\)\(e\left(\frac{3}{52}\right)\)\(e\left(\frac{85}{156}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8112 }(2333,a) \;\) at \(\;a = \) e.g. 2