sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8112, base_ring=CyclotomicField(156))
M = H._module
chi = DirichletCharacter(H, M([0,39,78,83]))
pari:[g,chi] = znchar(Mod(2165,8112))
Modulus: | \(8112\) | |
Conductor: | \(8112\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(156\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{8112}(245,\cdot)\)
\(\chi_{8112}(293,\cdot)\)
\(\chi_{8112}(461,\cdot)\)
\(\chi_{8112}(509,\cdot)\)
\(\chi_{8112}(869,\cdot)\)
\(\chi_{8112}(917,\cdot)\)
\(\chi_{8112}(1085,\cdot)\)
\(\chi_{8112}(1133,\cdot)\)
\(\chi_{8112}(1493,\cdot)\)
\(\chi_{8112}(1541,\cdot)\)
\(\chi_{8112}(1757,\cdot)\)
\(\chi_{8112}(2165,\cdot)\)
\(\chi_{8112}(2333,\cdot)\)
\(\chi_{8112}(2381,\cdot)\)
\(\chi_{8112}(2741,\cdot)\)
\(\chi_{8112}(2789,\cdot)\)
\(\chi_{8112}(2957,\cdot)\)
\(\chi_{8112}(3005,\cdot)\)
\(\chi_{8112}(3365,\cdot)\)
\(\chi_{8112}(3413,\cdot)\)
\(\chi_{8112}(3581,\cdot)\)
\(\chi_{8112}(3989,\cdot)\)
\(\chi_{8112}(4205,\cdot)\)
\(\chi_{8112}(4253,\cdot)\)
\(\chi_{8112}(4613,\cdot)\)
\(\chi_{8112}(4661,\cdot)\)
\(\chi_{8112}(4829,\cdot)\)
\(\chi_{8112}(4877,\cdot)\)
\(\chi_{8112}(5237,\cdot)\)
\(\chi_{8112}(5285,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5071,6085,2705,3889)\) → \((1,i,-1,e\left(\frac{83}{156}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 8112 }(2165, a) \) |
\(1\) | \(1\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{67}{156}\right)\) | \(e\left(\frac{43}{78}\right)\) | \(e\left(\frac{7}{39}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{83}{156}\right)\) | \(e\left(\frac{9}{52}\right)\) | \(e\left(\frac{151}{156}\right)\) |
sage:chi.jacobi_sum(n)