sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8041, base_ring=CyclotomicField(840))
M = H._module
chi = DirichletCharacter(H, M([504,735,260]))
pari:[g,chi] = znchar(Mod(614,8041))
| Modulus: | \(8041\) | |
| Conductor: | \(8041\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(840\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{8041}(26,\cdot)\)
\(\chi_{8041}(104,\cdot)\)
\(\chi_{8041}(202,\cdot)\)
\(\chi_{8041}(291,\cdot)\)
\(\chi_{8041}(372,\cdot)\)
\(\chi_{8041}(399,\cdot)\)
\(\chi_{8041}(416,\cdot)\)
\(\chi_{8041}(433,\cdot)\)
\(\chi_{8041}(478,\cdot)\)
\(\chi_{8041}(542,\cdot)\)
\(\chi_{8041}(587,\cdot)\)
\(\chi_{8041}(614,\cdot)\)
\(\chi_{8041}(620,\cdot)\)
\(\chi_{8041}(621,\cdot)\)
\(\chi_{8041}(631,\cdot)\)
\(\chi_{8041}(665,\cdot)\)
\(\chi_{8041}(757,\cdot)\)
\(\chi_{8041}(807,\cdot)\)
\(\chi_{8041}(808,\cdot)\)
\(\chi_{8041}(933,\cdot)\)
\(\chi_{8041}(994,\cdot)\)
\(\chi_{8041}(1103,\cdot)\)
\(\chi_{8041}(1137,\cdot)\)
\(\chi_{8041}(1147,\cdot)\)
\(\chi_{8041}(1148,\cdot)\)
\(\chi_{8041}(1164,\cdot)\)
\(\chi_{8041}(1181,\cdot)\)
\(\chi_{8041}(1318,\cdot)\)
\(\chi_{8041}(1324,\cdot)\)
\(\chi_{8041}(1345,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((6580,2366,562)\) → \((e\left(\frac{3}{5}\right),e\left(\frac{7}{8}\right),e\left(\frac{13}{42}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
| \( \chi_{ 8041 }(614, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{29}{140}\right)\) | \(e\left(\frac{827}{840}\right)\) | \(e\left(\frac{29}{70}\right)\) | \(e\left(\frac{431}{840}\right)\) | \(e\left(\frac{23}{120}\right)\) | \(e\left(\frac{79}{120}\right)\) | \(e\left(\frac{87}{140}\right)\) | \(e\left(\frac{407}{420}\right)\) | \(e\left(\frac{121}{168}\right)\) | \(e\left(\frac{67}{168}\right)\) |
sage:chi.jacobi_sum(n)