Properties

Label 8041.fz
Modulus $8041$
Conductor $8041$
Order $840$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8041, base_ring=CyclotomicField(840)) M = H._module chi = DirichletCharacter(H, M([168,105,340])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(26,8041)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8041\)
Conductor: \(8041\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(840\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{840})$
Fixed field: Number field defined by a degree 840 polynomial (not computed)

First 31 of 192 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\) \(12\)
\(\chi_{8041}(26,\cdot)\) \(-1\) \(1\) \(e\left(\frac{123}{140}\right)\) \(e\left(\frac{109}{840}\right)\) \(e\left(\frac{53}{70}\right)\) \(e\left(\frac{457}{840}\right)\) \(e\left(\frac{1}{120}\right)\) \(e\left(\frac{113}{120}\right)\) \(e\left(\frac{89}{140}\right)\) \(e\left(\frac{109}{420}\right)\) \(e\left(\frac{71}{168}\right)\) \(e\left(\frac{149}{168}\right)\)
\(\chi_{8041}(104,\cdot)\) \(-1\) \(1\) \(e\left(\frac{41}{140}\right)\) \(e\left(\frac{643}{840}\right)\) \(e\left(\frac{41}{70}\right)\) \(e\left(\frac{199}{840}\right)\) \(e\left(\frac{7}{120}\right)\) \(e\left(\frac{71}{120}\right)\) \(e\left(\frac{123}{140}\right)\) \(e\left(\frac{223}{420}\right)\) \(e\left(\frac{89}{168}\right)\) \(e\left(\frac{59}{168}\right)\)
\(\chi_{8041}(202,\cdot)\) \(-1\) \(1\) \(e\left(\frac{73}{140}\right)\) \(e\left(\frac{199}{840}\right)\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{187}{840}\right)\) \(e\left(\frac{91}{120}\right)\) \(e\left(\frac{83}{120}\right)\) \(e\left(\frac{79}{140}\right)\) \(e\left(\frac{199}{420}\right)\) \(e\left(\frac{125}{168}\right)\) \(e\left(\frac{47}{168}\right)\)
\(\chi_{8041}(291,\cdot)\) \(-1\) \(1\) \(e\left(\frac{81}{140}\right)\) \(e\left(\frac{683}{840}\right)\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{359}{840}\right)\) \(e\left(\frac{47}{120}\right)\) \(e\left(\frac{31}{120}\right)\) \(e\left(\frac{103}{140}\right)\) \(e\left(\frac{263}{420}\right)\) \(e\left(\frac{1}{168}\right)\) \(e\left(\frac{163}{168}\right)\)
\(\chi_{8041}(372,\cdot)\) \(-1\) \(1\) \(e\left(\frac{9}{140}\right)\) \(e\left(\frac{247}{840}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{211}{840}\right)\) \(e\left(\frac{43}{120}\right)\) \(e\left(\frac{59}{120}\right)\) \(e\left(\frac{27}{140}\right)\) \(e\left(\frac{247}{420}\right)\) \(e\left(\frac{53}{168}\right)\) \(e\left(\frac{71}{168}\right)\)
\(\chi_{8041}(399,\cdot)\) \(-1\) \(1\) \(e\left(\frac{127}{140}\right)\) \(e\left(\frac{281}{840}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{53}{840}\right)\) \(e\left(\frac{29}{120}\right)\) \(e\left(\frac{37}{120}\right)\) \(e\left(\frac{101}{140}\right)\) \(e\left(\frac{281}{420}\right)\) \(e\left(\frac{163}{168}\right)\) \(e\left(\frac{25}{168}\right)\)
\(\chi_{8041}(416,\cdot)\) \(-1\) \(1\) \(e\left(\frac{99}{140}\right)\) \(e\left(\frac{337}{840}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{781}{840}\right)\) \(e\left(\frac{13}{120}\right)\) \(e\left(\frac{29}{120}\right)\) \(e\left(\frac{17}{140}\right)\) \(e\left(\frac{337}{420}\right)\) \(e\left(\frac{107}{168}\right)\) \(e\left(\frac{137}{168}\right)\)
\(\chi_{8041}(433,\cdot)\) \(-1\) \(1\) \(e\left(\frac{83}{140}\right)\) \(e\left(\frac{209}{840}\right)\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{437}{840}\right)\) \(e\left(\frac{101}{120}\right)\) \(e\left(\frac{13}{120}\right)\) \(e\left(\frac{109}{140}\right)\) \(e\left(\frac{209}{420}\right)\) \(e\left(\frac{19}{168}\right)\) \(e\left(\frac{73}{168}\right)\)
\(\chi_{8041}(478,\cdot)\) \(-1\) \(1\) \(e\left(\frac{101}{140}\right)\) \(e\left(\frac{563}{840}\right)\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{719}{840}\right)\) \(e\left(\frac{47}{120}\right)\) \(e\left(\frac{31}{120}\right)\) \(e\left(\frac{23}{140}\right)\) \(e\left(\frac{143}{420}\right)\) \(e\left(\frac{97}{168}\right)\) \(e\left(\frac{19}{168}\right)\)
\(\chi_{8041}(542,\cdot)\) \(-1\) \(1\) \(e\left(\frac{137}{140}\right)\) \(e\left(\frac{151}{840}\right)\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{163}{840}\right)\) \(e\left(\frac{19}{120}\right)\) \(e\left(\frac{107}{120}\right)\) \(e\left(\frac{131}{140}\right)\) \(e\left(\frac{151}{420}\right)\) \(e\left(\frac{29}{168}\right)\) \(e\left(\frac{23}{168}\right)\)
\(\chi_{8041}(587,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{140}\right)\) \(e\left(\frac{709}{840}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{337}{840}\right)\) \(e\left(\frac{1}{120}\right)\) \(e\left(\frac{113}{120}\right)\) \(e\left(\frac{69}{140}\right)\) \(e\left(\frac{289}{420}\right)\) \(e\left(\frac{95}{168}\right)\) \(e\left(\frac{29}{168}\right)\)
\(\chi_{8041}(614,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{140}\right)\) \(e\left(\frac{827}{840}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{431}{840}\right)\) \(e\left(\frac{23}{120}\right)\) \(e\left(\frac{79}{120}\right)\) \(e\left(\frac{87}{140}\right)\) \(e\left(\frac{407}{420}\right)\) \(e\left(\frac{121}{168}\right)\) \(e\left(\frac{67}{168}\right)\)
\(\chi_{8041}(620,\cdot)\) \(-1\) \(1\) \(e\left(\frac{83}{140}\right)\) \(e\left(\frac{769}{840}\right)\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{157}{840}\right)\) \(e\left(\frac{61}{120}\right)\) \(e\left(\frac{53}{120}\right)\) \(e\left(\frac{109}{140}\right)\) \(e\left(\frac{349}{420}\right)\) \(e\left(\frac{131}{168}\right)\) \(e\left(\frac{17}{168}\right)\)
\(\chi_{8041}(621,\cdot)\) \(-1\) \(1\) \(e\left(\frac{51}{140}\right)\) \(e\left(\frac{653}{840}\right)\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{449}{840}\right)\) \(e\left(\frac{17}{120}\right)\) \(e\left(\frac{1}{120}\right)\) \(e\left(\frac{13}{140}\right)\) \(e\left(\frac{233}{420}\right)\) \(e\left(\frac{151}{168}\right)\) \(e\left(\frac{85}{168}\right)\)
\(\chi_{8041}(631,\cdot)\) \(-1\) \(1\) \(e\left(\frac{113}{140}\right)\) \(e\left(\frac{379}{840}\right)\) \(e\left(\frac{43}{70}\right)\) \(e\left(\frac{487}{840}\right)\) \(e\left(\frac{31}{120}\right)\) \(e\left(\frac{23}{120}\right)\) \(e\left(\frac{59}{140}\right)\) \(e\left(\frac{379}{420}\right)\) \(e\left(\frac{65}{168}\right)\) \(e\left(\frac{11}{168}\right)\)
\(\chi_{8041}(665,\cdot)\) \(-1\) \(1\) \(e\left(\frac{61}{140}\right)\) \(e\left(\frac{803}{840}\right)\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{839}{840}\right)\) \(e\left(\frac{47}{120}\right)\) \(e\left(\frac{31}{120}\right)\) \(e\left(\frac{43}{140}\right)\) \(e\left(\frac{383}{420}\right)\) \(e\left(\frac{73}{168}\right)\) \(e\left(\frac{139}{168}\right)\)
\(\chi_{8041}(757,\cdot)\) \(-1\) \(1\) \(e\left(\frac{39}{140}\right)\) \(e\left(\frac{277}{840}\right)\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{121}{840}\right)\) \(e\left(\frac{73}{120}\right)\) \(e\left(\frac{89}{120}\right)\) \(e\left(\frac{117}{140}\right)\) \(e\left(\frac{277}{420}\right)\) \(e\left(\frac{71}{168}\right)\) \(e\left(\frac{149}{168}\right)\)
\(\chi_{8041}(807,\cdot)\) \(-1\) \(1\) \(e\left(\frac{123}{140}\right)\) \(e\left(\frac{809}{840}\right)\) \(e\left(\frac{53}{70}\right)\) \(e\left(\frac{317}{840}\right)\) \(e\left(\frac{101}{120}\right)\) \(e\left(\frac{13}{120}\right)\) \(e\left(\frac{89}{140}\right)\) \(e\left(\frac{389}{420}\right)\) \(e\left(\frac{43}{168}\right)\) \(e\left(\frac{121}{168}\right)\)
\(\chi_{8041}(808,\cdot)\) \(-1\) \(1\) \(e\left(\frac{131}{140}\right)\) \(e\left(\frac{733}{840}\right)\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{769}{840}\right)\) \(e\left(\frac{97}{120}\right)\) \(e\left(\frac{41}{120}\right)\) \(e\left(\frac{113}{140}\right)\) \(e\left(\frac{313}{420}\right)\) \(e\left(\frac{143}{168}\right)\) \(e\left(\frac{125}{168}\right)\)
\(\chi_{8041}(933,\cdot)\) \(-1\) \(1\) \(e\left(\frac{129}{140}\right)\) \(e\left(\frac{367}{840}\right)\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{691}{840}\right)\) \(e\left(\frac{43}{120}\right)\) \(e\left(\frac{59}{120}\right)\) \(e\left(\frac{107}{140}\right)\) \(e\left(\frac{367}{420}\right)\) \(e\left(\frac{125}{168}\right)\) \(e\left(\frac{47}{168}\right)\)
\(\chi_{8041}(994,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{140}\right)\) \(e\left(\frac{689}{840}\right)\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{677}{840}\right)\) \(e\left(\frac{101}{120}\right)\) \(e\left(\frac{13}{120}\right)\) \(e\left(\frac{9}{140}\right)\) \(e\left(\frac{269}{420}\right)\) \(e\left(\frac{139}{168}\right)\) \(e\left(\frac{145}{168}\right)\)
\(\chi_{8041}(1103,\cdot)\) \(-1\) \(1\) \(e\left(\frac{37}{140}\right)\) \(e\left(\frac{751}{840}\right)\) \(e\left(\frac{37}{70}\right)\) \(e\left(\frac{43}{840}\right)\) \(e\left(\frac{19}{120}\right)\) \(e\left(\frac{107}{120}\right)\) \(e\left(\frac{111}{140}\right)\) \(e\left(\frac{331}{420}\right)\) \(e\left(\frac{53}{168}\right)\) \(e\left(\frac{71}{168}\right)\)
\(\chi_{8041}(1137,\cdot)\) \(-1\) \(1\) \(e\left(\frac{93}{140}\right)\) \(e\left(\frac{359}{840}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{827}{840}\right)\) \(e\left(\frac{11}{120}\right)\) \(e\left(\frac{43}{120}\right)\) \(e\left(\frac{139}{140}\right)\) \(e\left(\frac{359}{420}\right)\) \(e\left(\frac{109}{168}\right)\) \(e\left(\frac{127}{168}\right)\)
\(\chi_{8041}(1147,\cdot)\) \(-1\) \(1\) \(e\left(\frac{127}{140}\right)\) \(e\left(\frac{1}{840}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{613}{840}\right)\) \(e\left(\frac{109}{120}\right)\) \(e\left(\frac{77}{120}\right)\) \(e\left(\frac{101}{140}\right)\) \(e\left(\frac{1}{420}\right)\) \(e\left(\frac{107}{168}\right)\) \(e\left(\frac{137}{168}\right)\)
\(\chi_{8041}(1148,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{140}\right)\) \(e\left(\frac{829}{840}\right)\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{817}{840}\right)\) \(e\left(\frac{1}{120}\right)\) \(e\left(\frac{113}{120}\right)\) \(e\left(\frac{9}{140}\right)\) \(e\left(\frac{409}{420}\right)\) \(e\left(\frac{167}{168}\right)\) \(e\left(\frac{5}{168}\right)\)
\(\chi_{8041}(1164,\cdot)\) \(-1\) \(1\) \(e\left(\frac{139}{140}\right)\) \(e\left(\frac{377}{840}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{101}{840}\right)\) \(e\left(\frac{53}{120}\right)\) \(e\left(\frac{109}{120}\right)\) \(e\left(\frac{137}{140}\right)\) \(e\left(\frac{377}{420}\right)\) \(e\left(\frac{19}{168}\right)\) \(e\left(\frac{73}{168}\right)\)
\(\chi_{8041}(1181,\cdot)\) \(-1\) \(1\) \(e\left(\frac{103}{140}\right)\) \(e\left(\frac{89}{840}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{797}{840}\right)\) \(e\left(\frac{101}{120}\right)\) \(e\left(\frac{13}{120}\right)\) \(e\left(\frac{29}{140}\right)\) \(e\left(\frac{89}{420}\right)\) \(e\left(\frac{115}{168}\right)\) \(e\left(\frac{97}{168}\right)\)
\(\chi_{8041}(1318,\cdot)\) \(-1\) \(1\) \(e\left(\frac{79}{140}\right)\) \(e\left(\frac{37}{840}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{1}{840}\right)\) \(e\left(\frac{73}{120}\right)\) \(e\left(\frac{89}{120}\right)\) \(e\left(\frac{97}{140}\right)\) \(e\left(\frac{37}{420}\right)\) \(e\left(\frac{95}{168}\right)\) \(e\left(\frac{29}{168}\right)\)
\(\chi_{8041}(1324,\cdot)\) \(-1\) \(1\) \(e\left(\frac{33}{140}\right)\) \(e\left(\frac{439}{840}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{307}{840}\right)\) \(e\left(\frac{91}{120}\right)\) \(e\left(\frac{83}{120}\right)\) \(e\left(\frac{99}{140}\right)\) \(e\left(\frac{19}{420}\right)\) \(e\left(\frac{101}{168}\right)\) \(e\left(\frac{167}{168}\right)\)
\(\chi_{8041}(1345,\cdot)\) \(-1\) \(1\) \(e\left(\frac{57}{140}\right)\) \(e\left(\frac{491}{840}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{263}{840}\right)\) \(e\left(\frac{119}{120}\right)\) \(e\left(\frac{7}{120}\right)\) \(e\left(\frac{31}{140}\right)\) \(e\left(\frac{71}{420}\right)\) \(e\left(\frac{121}{168}\right)\) \(e\left(\frac{67}{168}\right)\)
\(\chi_{8041}(1351,\cdot)\) \(-1\) \(1\) \(e\left(\frac{139}{140}\right)\) \(e\left(\frac{97}{840}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{661}{840}\right)\) \(e\left(\frac{13}{120}\right)\) \(e\left(\frac{29}{120}\right)\) \(e\left(\frac{137}{140}\right)\) \(e\left(\frac{97}{420}\right)\) \(e\left(\frac{131}{168}\right)\) \(e\left(\frac{17}{168}\right)\)