Properties

Label 8041.562
Modulus $8041$
Conductor $43$
Order $42$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8041, base_ring=CyclotomicField(42)) M = H._module chi = DirichletCharacter(H, M([0,0,1]))
 
Copy content pari:[g,chi] = znchar(Mod(562,8041))
 

Basic properties

Modulus: \(8041\)
Conductor: \(43\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(42\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{43}(3,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8041.da

\(\chi_{8041}(562,\cdot)\) \(\chi_{8041}(749,\cdot)\) \(\chi_{8041}(936,\cdot)\) \(\chi_{8041}(1123,\cdot)\) \(\chi_{8041}(1310,\cdot)\) \(\chi_{8041}(2993,\cdot)\) \(\chi_{8041}(3554,\cdot)\) \(\chi_{8041}(4115,\cdot)\) \(\chi_{8041}(5050,\cdot)\) \(\chi_{8041}(5237,\cdot)\) \(\chi_{8041}(7107,\cdot)\) \(\chi_{8041}(7855,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: Number field defined by a degree 42 polynomial

Values on generators

\((6580,2366,562)\) → \((1,1,e\left(\frac{1}{42}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(12\)
\( \chi_{ 8041 }(562, a) \) \(-1\)\(1\)\(e\left(\frac{9}{14}\right)\)\(e\left(\frac{1}{42}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{25}{42}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{13}{14}\right)\)\(e\left(\frac{1}{21}\right)\)\(e\left(\frac{5}{21}\right)\)\(e\left(\frac{13}{42}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8041 }(562,a) \;\) at \(\;a = \) e.g. 2