sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8041, base_ring=CyclotomicField(1680))
M = H._module
chi = DirichletCharacter(H, M([1008,105,1480]))
pari:[g,chi] = znchar(Mod(20,8041))
| Modulus: | \(8041\) | |
| Conductor: | \(8041\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(1680\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{8041}(3,\cdot)\)
\(\chi_{8041}(5,\cdot)\)
\(\chi_{8041}(20,\cdot)\)
\(\chi_{8041}(48,\cdot)\)
\(\chi_{8041}(71,\cdot)\)
\(\chi_{8041}(91,\cdot)\)
\(\chi_{8041}(114,\cdot)\)
\(\chi_{8041}(141,\cdot)\)
\(\chi_{8041}(147,\cdot)\)
\(\chi_{8041}(148,\cdot)\)
\(\chi_{8041}(158,\cdot)\)
\(\chi_{8041}(159,\cdot)\)
\(\chi_{8041}(163,\cdot)\)
\(\chi_{8041}(190,\cdot)\)
\(\chi_{8041}(192,\cdot)\)
\(\chi_{8041}(201,\cdot)\)
\(\chi_{8041}(218,\cdot)\)
\(\chi_{8041}(235,\cdot)\)
\(\chi_{8041}(245,\cdot)\)
\(\chi_{8041}(278,\cdot)\)
\(\chi_{8041}(284,\cdot)\)
\(\chi_{8041}(313,\cdot)\)
\(\chi_{8041}(334,\cdot)\)
\(\chi_{8041}(335,\cdot)\)
\(\chi_{8041}(377,\cdot)\)
\(\chi_{8041}(405,\cdot)\)
\(\chi_{8041}(449,\cdot)\)
\(\chi_{8041}(456,\cdot)\)
\(\chi_{8041}(499,\cdot)\)
\(\chi_{8041}(521,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((6580,2366,562)\) → \((e\left(\frac{3}{5}\right),e\left(\frac{1}{16}\right),e\left(\frac{37}{42}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
| \( \chi_{ 8041 }(20, a) \) |
\(1\) | \(1\) | \(e\left(\frac{73}{280}\right)\) | \(e\left(\frac{1249}{1680}\right)\) | \(e\left(\frac{73}{140}\right)\) | \(e\left(\frac{1237}{1680}\right)\) | \(e\left(\frac{1}{240}\right)\) | \(e\left(\frac{173}{240}\right)\) | \(e\left(\frac{219}{280}\right)\) | \(e\left(\frac{409}{840}\right)\) | \(e\left(\frac{335}{336}\right)\) | \(e\left(\frac{89}{336}\right)\) |
sage:chi.jacobi_sum(n)