# Properties

 Conductor 8041 Order 1680 Real No Primitive Yes Parity Even Orbit Label 8041.gd

# Related objects

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed

sage: H = DirichletGroup_conrey(8041)

sage: chi = H[3]

pari: [g,chi] = znchar(Mod(3,8041))

## Basic properties

 sage: chi.conductor()  pari: znconreyconductor(g,chi) Conductor = 8041 sage: chi.multiplicative_order()  pari: charorder(g,chi) Order = 1680 Real = No sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization] Primitive = Yes sage: chi.is_odd()  pari: zncharisodd(g,chi) Parity = Even Orbit label = 8041.gd Orbit index = 160

## Galois orbit

sage: chi.sage_character().galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(6580,2366,562)$$ → $$(e\left(\frac{4}{5}\right),e\left(\frac{1}{16}\right),e\left(\frac{1}{42}\right))$$

## Values

 -1 1 2 3 4 5 6 7 8 9 10 12 $$1$$ $$1$$ $$e\left(\frac{89}{280}\right)$$ $$e\left(\frac{817}{1680}\right)$$ $$e\left(\frac{89}{140}\right)$$ $$e\left(\frac{181}{1680}\right)$$ $$e\left(\frac{193}{240}\right)$$ $$e\left(\frac{29}{240}\right)$$ $$e\left(\frac{267}{280}\right)$$ $$e\left(\frac{817}{840}\right)$$ $$e\left(\frac{143}{336}\right)$$ $$e\left(\frac{41}{336}\right)$$
value at  e.g. 2

## Related number fields

 Field of values $$\Q(\zeta_{1680})$$