Properties

Label 8007.fi
Modulus $8007$
Conductor $8007$
Order $624$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8007, base_ring=CyclotomicField(624)) M = H._module chi = DirichletCharacter(H, M([312,117,616])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(44,8007)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8007\)
Conductor: \(8007\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(624\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{624})$
Fixed field: Number field defined by a degree 624 polynomial (not computed)

First 31 of 192 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(13\) \(14\) \(16\)
\(\chi_{8007}(44,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{104}\right)\) \(e\left(\frac{33}{52}\right)\) \(e\left(\frac{265}{624}\right)\) \(e\left(\frac{37}{208}\right)\) \(e\left(\frac{99}{104}\right)\) \(e\left(\frac{463}{624}\right)\) \(e\left(\frac{283}{624}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{103}{208}\right)\) \(e\left(\frac{7}{26}\right)\)
\(\chi_{8007}(122,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{104}\right)\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{163}{624}\right)\) \(e\left(\frac{135}{208}\right)\) \(e\left(\frac{97}{104}\right)\) \(e\left(\frac{565}{624}\right)\) \(e\left(\frac{313}{624}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{61}{208}\right)\) \(e\left(\frac{15}{26}\right)\)
\(\chi_{8007}(146,\cdot)\) \(1\) \(1\) \(e\left(\frac{97}{104}\right)\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{73}{624}\right)\) \(e\left(\frac{197}{208}\right)\) \(e\left(\frac{83}{104}\right)\) \(e\left(\frac{31}{624}\right)\) \(e\left(\frac{523}{624}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{183}{208}\right)\) \(e\left(\frac{19}{26}\right)\)
\(\chi_{8007}(167,\cdot)\) \(1\) \(1\) \(e\left(\frac{75}{104}\right)\) \(e\left(\frac{23}{52}\right)\) \(e\left(\frac{139}{624}\right)\) \(e\left(\frac{207}{208}\right)\) \(e\left(\frac{17}{104}\right)\) \(e\left(\frac{589}{624}\right)\) \(e\left(\frac{577}{624}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{149}{208}\right)\) \(e\left(\frac{23}{26}\right)\)
\(\chi_{8007}(182,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{104}\right)\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{359}{624}\right)\) \(e\left(\frac{171}{208}\right)\) \(e\left(\frac{5}{104}\right)\) \(e\left(\frac{161}{624}\right)\) \(e\left(\frac{341}{624}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{105}{208}\right)\) \(e\left(\frac{19}{26}\right)\)
\(\chi_{8007}(233,\cdot)\) \(1\) \(1\) \(e\left(\frac{87}{104}\right)\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{103}{624}\right)\) \(e\left(\frac{107}{208}\right)\) \(e\left(\frac{53}{104}\right)\) \(e\left(\frac{1}{624}\right)\) \(e\left(\frac{37}{624}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{73}{208}\right)\) \(e\left(\frac{9}{26}\right)\)
\(\chi_{8007}(284,\cdot)\) \(1\) \(1\) \(e\left(\frac{87}{104}\right)\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{311}{624}\right)\) \(e\left(\frac{107}{208}\right)\) \(e\left(\frac{53}{104}\right)\) \(e\left(\frac{209}{624}\right)\) \(e\left(\frac{245}{624}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{73}{208}\right)\) \(e\left(\frac{9}{26}\right)\)
\(\chi_{8007}(317,\cdot)\) \(1\) \(1\) \(e\left(\frac{77}{104}\right)\) \(e\left(\frac{25}{52}\right)\) \(e\left(\frac{133}{624}\right)\) \(e\left(\frac{17}{208}\right)\) \(e\left(\frac{23}{104}\right)\) \(e\left(\frac{595}{624}\right)\) \(e\left(\frac{175}{624}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{171}{208}\right)\) \(e\left(\frac{25}{26}\right)\)
\(\chi_{8007}(347,\cdot)\) \(1\) \(1\) \(e\left(\frac{57}{104}\right)\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{401}{624}\right)\) \(e\left(\frac{45}{208}\right)\) \(e\left(\frac{67}{104}\right)\) \(e\left(\frac{119}{624}\right)\) \(e\left(\frac{35}{624}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{159}{208}\right)\) \(e\left(\frac{5}{26}\right)\)
\(\chi_{8007}(350,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{104}\right)\) \(e\left(\frac{25}{52}\right)\) \(e\left(\frac{185}{624}\right)\) \(e\left(\frac{69}{208}\right)\) \(e\left(\frac{75}{104}\right)\) \(e\left(\frac{335}{624}\right)\) \(e\left(\frac{539}{624}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{119}{208}\right)\) \(e\left(\frac{25}{26}\right)\)
\(\chi_{8007}(362,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{104}\right)\) \(e\left(\frac{27}{52}\right)\) \(e\left(\frac{127}{624}\right)\) \(e\left(\frac{35}{208}\right)\) \(e\left(\frac{29}{104}\right)\) \(e\left(\frac{601}{624}\right)\) \(e\left(\frac{397}{624}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{193}{208}\right)\) \(e\left(\frac{1}{26}\right)\)
\(\chi_{8007}(371,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{104}\right)\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{395}{624}\right)\) \(e\left(\frac{63}{208}\right)\) \(e\left(\frac{73}{104}\right)\) \(e\left(\frac{125}{624}\right)\) \(e\left(\frac{257}{624}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{181}{208}\right)\) \(e\left(\frac{7}{26}\right)\)
\(\chi_{8007}(419,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{104}\right)\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{101}{624}\right)\) \(e\left(\frac{113}{208}\right)\) \(e\left(\frac{55}{104}\right)\) \(e\left(\frac{419}{624}\right)\) \(e\left(\frac{527}{624}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{208}\right)\) \(e\left(\frac{1}{26}\right)\)
\(\chi_{8007}(431,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{104}\right)\) \(e\left(\frac{37}{52}\right)\) \(e\left(\frac{253}{624}\right)\) \(e\left(\frac{73}{208}\right)\) \(e\left(\frac{7}{104}\right)\) \(e\left(\frac{475}{624}\right)\) \(e\left(\frac{103}{624}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{147}{208}\right)\) \(e\left(\frac{11}{26}\right)\)
\(\chi_{8007}(452,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{104}\right)\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{457}{624}\right)\) \(e\left(\frac{85}{208}\right)\) \(e\left(\frac{11}{104}\right)\) \(e\left(\frac{271}{624}\right)\) \(e\left(\frac{43}{624}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{23}{208}\right)\) \(e\left(\frac{21}{26}\right)\)
\(\chi_{8007}(515,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{104}\right)\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{31}{624}\right)\) \(e\left(\frac{115}{208}\right)\) \(e\left(\frac{21}{104}\right)\) \(e\left(\frac{73}{624}\right)\) \(e\left(\frac{205}{624}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{129}{208}\right)\) \(e\left(\frac{7}{26}\right)\)
\(\chi_{8007}(539,\cdot)\) \(1\) \(1\) \(e\left(\frac{95}{104}\right)\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{391}{624}\right)\) \(e\left(\frac{75}{208}\right)\) \(e\left(\frac{77}{104}\right)\) \(e\left(\frac{337}{624}\right)\) \(e\left(\frac{613}{624}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{57}{208}\right)\) \(e\left(\frac{17}{26}\right)\)
\(\chi_{8007}(581,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{104}\right)\) \(e\left(\frac{3}{52}\right)\) \(e\left(\frac{563}{624}\right)\) \(e\left(\frac{183}{208}\right)\) \(e\left(\frac{9}{104}\right)\) \(e\left(\frac{581}{624}\right)\) \(e\left(\frac{281}{624}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{189}{208}\right)\) \(e\left(\frac{3}{26}\right)\)
\(\chi_{8007}(617,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{104}\right)\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{463}{624}\right)\) \(e\left(\frac{67}{208}\right)\) \(e\left(\frac{5}{104}\right)\) \(e\left(\frac{265}{624}\right)\) \(e\left(\frac{445}{624}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{208}\right)\) \(e\left(\frac{19}{26}\right)\)
\(\chi_{8007}(653,\cdot)\) \(1\) \(1\) \(e\left(\frac{97}{104}\right)\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{593}{624}\right)\) \(e\left(\frac{93}{208}\right)\) \(e\left(\frac{83}{104}\right)\) \(e\left(\frac{551}{624}\right)\) \(e\left(\frac{419}{624}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{79}{208}\right)\) \(e\left(\frac{19}{26}\right)\)
\(\chi_{8007}(704,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{104}\right)\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{337}{624}\right)\) \(e\left(\frac{29}{208}\right)\) \(e\left(\frac{27}{104}\right)\) \(e\left(\frac{391}{624}\right)\) \(e\left(\frac{115}{624}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{47}{208}\right)\) \(e\left(\frac{9}{26}\right)\)
\(\chi_{8007}(755,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{104}\right)\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{545}{624}\right)\) \(e\left(\frac{29}{208}\right)\) \(e\left(\frac{27}{104}\right)\) \(e\left(\frac{599}{624}\right)\) \(e\left(\frac{323}{624}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{47}{208}\right)\) \(e\left(\frac{9}{26}\right)\)
\(\chi_{8007}(776,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{104}\right)\) \(e\left(\frac{37}{52}\right)\) \(e\left(\frac{149}{624}\right)\) \(e\left(\frac{177}{208}\right)\) \(e\left(\frac{7}{104}\right)\) \(e\left(\frac{371}{624}\right)\) \(e\left(\frac{623}{624}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{43}{208}\right)\) \(e\left(\frac{11}{26}\right)\)
\(\chi_{8007}(788,\cdot)\) \(1\) \(1\) \(e\left(\frac{77}{104}\right)\) \(e\left(\frac{25}{52}\right)\) \(e\left(\frac{445}{624}\right)\) \(e\left(\frac{121}{208}\right)\) \(e\left(\frac{23}{104}\right)\) \(e\left(\frac{283}{624}\right)\) \(e\left(\frac{487}{624}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{67}{208}\right)\) \(e\left(\frac{25}{26}\right)\)
\(\chi_{8007}(821,\cdot)\) \(1\) \(1\) \(e\left(\frac{103}{104}\right)\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{575}{624}\right)\) \(e\left(\frac{147}{208}\right)\) \(e\left(\frac{101}{104}\right)\) \(e\left(\frac{569}{624}\right)\) \(e\left(\frac{461}{624}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{145}{208}\right)\) \(e\left(\frac{25}{26}\right)\)
\(\chi_{8007}(827,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{104}\right)\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{37}{624}\right)\) \(e\left(\frac{97}{208}\right)\) \(e\left(\frac{15}{104}\right)\) \(e\left(\frac{67}{624}\right)\) \(e\left(\frac{607}{624}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{107}{208}\right)\) \(e\left(\frac{5}{26}\right)\)
\(\chi_{8007}(836,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{104}\right)\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{371}{624}\right)\) \(e\left(\frac{135}{208}\right)\) \(e\left(\frac{97}{104}\right)\) \(e\left(\frac{149}{624}\right)\) \(e\left(\frac{521}{624}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{61}{208}\right)\) \(e\left(\frac{15}{26}\right)\)
\(\chi_{8007}(890,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{104}\right)\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{413}{624}\right)\) \(e\left(\frac{9}{208}\right)\) \(e\left(\frac{55}{104}\right)\) \(e\left(\frac{107}{624}\right)\) \(e\left(\frac{215}{624}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{115}{208}\right)\) \(e\left(\frac{1}{26}\right)\)
\(\chi_{8007}(923,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{104}\right)\) \(e\left(\frac{47}{52}\right)\) \(e\left(\frac{223}{624}\right)\) \(e\left(\frac{163}{208}\right)\) \(e\left(\frac{37}{104}\right)\) \(e\left(\frac{505}{624}\right)\) \(e\left(\frac{589}{624}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{49}{208}\right)\) \(e\left(\frac{21}{26}\right)\)
\(\chi_{8007}(1010,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{104}\right)\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{1}{624}\right)\) \(e\left(\frac{205}{208}\right)\) \(e\left(\frac{51}{104}\right)\) \(e\left(\frac{103}{624}\right)\) \(e\left(\frac{67}{624}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{31}{208}\right)\) \(e\left(\frac{17}{26}\right)\)
\(\chi_{8007}(1064,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{104}\right)\) \(e\left(\frac{41}{52}\right)\) \(e\left(\frac{553}{624}\right)\) \(e\left(\frac{5}{208}\right)\) \(e\left(\frac{19}{104}\right)\) \(e\left(\frac{175}{624}\right)\) \(e\left(\frac{235}{624}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{87}{208}\right)\) \(e\left(\frac{15}{26}\right)\)