sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8007, base_ring=CyclotomicField(624))
M = H._module
chi = DirichletCharacter(H, M([312,585,328]))
pari:[g,chi] = znchar(Mod(788,8007))
| Modulus: | \(8007\) | |
| Conductor: | \(8007\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(624\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{8007}(44,\cdot)\)
\(\chi_{8007}(122,\cdot)\)
\(\chi_{8007}(146,\cdot)\)
\(\chi_{8007}(167,\cdot)\)
\(\chi_{8007}(182,\cdot)\)
\(\chi_{8007}(233,\cdot)\)
\(\chi_{8007}(284,\cdot)\)
\(\chi_{8007}(317,\cdot)\)
\(\chi_{8007}(347,\cdot)\)
\(\chi_{8007}(350,\cdot)\)
\(\chi_{8007}(362,\cdot)\)
\(\chi_{8007}(371,\cdot)\)
\(\chi_{8007}(419,\cdot)\)
\(\chi_{8007}(431,\cdot)\)
\(\chi_{8007}(452,\cdot)\)
\(\chi_{8007}(515,\cdot)\)
\(\chi_{8007}(539,\cdot)\)
\(\chi_{8007}(581,\cdot)\)
\(\chi_{8007}(617,\cdot)\)
\(\chi_{8007}(653,\cdot)\)
\(\chi_{8007}(704,\cdot)\)
\(\chi_{8007}(755,\cdot)\)
\(\chi_{8007}(776,\cdot)\)
\(\chi_{8007}(788,\cdot)\)
\(\chi_{8007}(821,\cdot)\)
\(\chi_{8007}(827,\cdot)\)
\(\chi_{8007}(836,\cdot)\)
\(\chi_{8007}(890,\cdot)\)
\(\chi_{8007}(923,\cdot)\)
\(\chi_{8007}(1010,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5339,1414,7855)\) → \((-1,e\left(\frac{15}{16}\right),e\left(\frac{41}{78}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
| \( \chi_{ 8007 }(788, a) \) |
\(1\) | \(1\) | \(e\left(\frac{77}{104}\right)\) | \(e\left(\frac{25}{52}\right)\) | \(e\left(\frac{445}{624}\right)\) | \(e\left(\frac{121}{208}\right)\) | \(e\left(\frac{23}{104}\right)\) | \(e\left(\frac{283}{624}\right)\) | \(e\left(\frac{487}{624}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{67}{208}\right)\) | \(e\left(\frac{25}{26}\right)\) |
sage:chi.jacobi_sum(n)