Properties

Label 8007.fe
Modulus $8007$
Conductor $8007$
Order $312$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8007, base_ring=CyclotomicField(312)) M = H._module chi = DirichletCharacter(H, M([156,39,22])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(26,8007)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8007\)
Conductor: \(8007\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(312\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{312})$
Fixed field: Number field defined by a degree 312 polynomial (not computed)

First 31 of 96 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(13\) \(14\) \(16\)
\(\chi_{8007}(26,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{61}{312}\right)\) \(e\left(\frac{77}{104}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{121}{312}\right)\) \(e\left(\frac{109}{312}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{97}{104}\right)\) \(e\left(\frac{10}{13}\right)\)
\(\chi_{8007}(77,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{77}{312}\right)\) \(e\left(\frac{29}{104}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{209}{312}\right)\) \(e\left(\frac{245}{312}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{73}{104}\right)\) \(e\left(\frac{9}{13}\right)\)
\(\chi_{8007}(104,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{235}{312}\right)\) \(e\left(\frac{75}{104}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{103}{312}\right)\) \(e\left(\frac{67}{312}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{31}{104}\right)\) \(e\left(\frac{4}{13}\right)\)
\(\chi_{8007}(308,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{251}{312}\right)\) \(e\left(\frac{27}{104}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{191}{312}\right)\) \(e\left(\frac{203}{312}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{104}\right)\) \(e\left(\frac{3}{13}\right)\)
\(\chi_{8007}(338,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{191}{312}\right)\) \(e\left(\frac{103}{104}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{251}{312}\right)\) \(e\left(\frac{239}{312}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{19}{104}\right)\) \(e\left(\frac{10}{13}\right)\)
\(\chi_{8007}(416,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{97}{312}\right)\) \(e\left(\frac{73}{104}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{85}{312}\right)\) \(e\left(\frac{25}{312}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{69}{104}\right)\) \(e\left(\frac{11}{13}\right)\)
\(\chi_{8007}(791,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{173}{312}\right)\) \(e\left(\frac{53}{104}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{113}{312}\right)\) \(e\left(\frac{125}{312}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{33}{104}\right)\) \(e\left(\frac{3}{13}\right)\)
\(\chi_{8007}(995,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{157}{312}\right)\) \(e\left(\frac{101}{104}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{25}{312}\right)\) \(e\left(\frac{301}{312}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{57}{104}\right)\) \(e\left(\frac{4}{13}\right)\)
\(\chi_{8007}(1022,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{155}{312}\right)\) \(e\left(\frac{3}{104}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{287}{312}\right)\) \(e\left(\frac{11}{312}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{47}{104}\right)\) \(e\left(\frac{9}{13}\right)\)
\(\chi_{8007}(1073,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{139}{312}\right)\) \(e\left(\frac{51}{104}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{199}{312}\right)\) \(e\left(\frac{187}{312}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{71}{104}\right)\) \(e\left(\frac{10}{13}\right)\)
\(\chi_{8007}(1154,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{175}{312}\right)\) \(e\left(\frac{47}{104}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{163}{312}\right)\) \(e\left(\frac{103}{312}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{43}{104}\right)\) \(e\left(\frac{11}{13}\right)\)
\(\chi_{8007}(1232,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{113}{312}\right)\) \(e\left(\frac{25}{104}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{173}{312}\right)\) \(e\left(\frac{161}{312}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{45}{104}\right)\) \(e\left(\frac{10}{13}\right)\)
\(\chi_{8007}(1277,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{107}{312}\right)\) \(e\left(\frac{43}{104}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{23}{312}\right)\) \(e\left(\frac{227}{312}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{15}{104}\right)\) \(e\left(\frac{12}{13}\right)\)
\(\chi_{8007}(1352,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{53}{312}\right)\) \(e\left(\frac{101}{104}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{233}{312}\right)\) \(e\left(\frac{197}{312}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{57}{104}\right)\) \(e\left(\frac{4}{13}\right)\)
\(\chi_{8007}(1613,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{31}{312}\right)\) \(e\left(\frac{63}{104}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{307}{312}\right)\) \(e\left(\frac{127}{312}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{51}{104}\right)\) \(e\left(\frac{7}{13}\right)\)
\(\chi_{8007}(1658,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{5}{312}\right)\) \(e\left(\frac{37}{104}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{281}{312}\right)\) \(e\left(\frac{101}{312}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{25}{104}\right)\) \(e\left(\frac{7}{13}\right)\)
\(\chi_{8007}(1664,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{271}{312}\right)\) \(e\left(\frac{71}{104}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{67}{312}\right)\) \(e\left(\frac{295}{312}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{104}\right)\) \(e\left(\frac{5}{13}\right)\)
\(\chi_{8007}(1709,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{181}{312}\right)\) \(e\left(\frac{29}{104}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{1}{312}\right)\) \(e\left(\frac{37}{312}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{73}{104}\right)\) \(e\left(\frac{9}{13}\right)\)
\(\chi_{8007}(1742,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{49}{312}\right)\) \(e\left(\frac{9}{104}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{133}{312}\right)\) \(e\left(\frac{241}{312}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{37}{104}\right)\) \(e\left(\frac{1}{13}\right)\)
\(\chi_{8007}(1787,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{67}{312}\right)\) \(e\left(\frac{59}{104}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{271}{312}\right)\) \(e\left(\frac{43}{312}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{23}{104}\right)\) \(e\left(\frac{8}{13}\right)\)
\(\chi_{8007}(1793,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{73}{312}\right)\) \(e\left(\frac{41}{104}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{109}{312}\right)\) \(e\left(\frac{289}{312}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{53}{104}\right)\) \(e\left(\frac{6}{13}\right)\)
\(\chi_{8007}(1811,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{125}{312}\right)\) \(e\left(\frac{93}{104}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{161}{312}\right)\) \(e\left(\frac{29}{312}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{104}\right)\) \(e\left(\frac{6}{13}\right)\)
\(\chi_{8007}(1889,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{275}{312}\right)\) \(e\left(\frac{59}{104}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{167}{312}\right)\) \(e\left(\frac{251}{312}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{23}{104}\right)\) \(e\left(\frac{8}{13}\right)\)
\(\chi_{8007}(1946,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{289}{312}\right)\) \(e\left(\frac{17}{104}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{205}{312}\right)\) \(e\left(\frac{97}{312}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{93}{104}\right)\) \(e\left(\frac{12}{13}\right)\)
\(\chi_{8007}(2021,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{215}{312}\right)\) \(e\left(\frac{31}{104}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{227}{312}\right)\) \(e\left(\frac{287}{312}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{35}{104}\right)\) \(e\left(\frac{2}{13}\right)\)
\(\chi_{8007}(2270,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{277}{312}\right)\) \(e\left(\frac{53}{104}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{217}{312}\right)\) \(e\left(\frac{229}{312}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{33}{104}\right)\) \(e\left(\frac{3}{13}\right)\)
\(\chi_{8007}(2321,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{245}{312}\right)\) \(e\left(\frac{45}{104}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{41}{312}\right)\) \(e\left(\frac{269}{312}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{81}{104}\right)\) \(e\left(\frac{5}{13}\right)\)
\(\chi_{8007}(2429,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{7}{312}\right)\) \(e\left(\frac{31}{104}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{19}{312}\right)\) \(e\left(\frac{79}{312}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{35}{104}\right)\) \(e\left(\frac{2}{13}\right)\)
\(\chi_{8007}(2450,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{211}{312}\right)\) \(e\left(\frac{43}{104}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{127}{312}\right)\) \(e\left(\frac{19}{312}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{15}{104}\right)\) \(e\left(\frac{12}{13}\right)\)
\(\chi_{8007}(2474,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{101}{312}\right)\) \(e\left(\frac{61}{104}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{185}{312}\right)\) \(e\left(\frac{293}{312}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{89}{104}\right)\) \(e\left(\frac{1}{13}\right)\)
\(\chi_{8007}(2507,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{41}{312}\right)\) \(e\left(\frac{33}{104}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{245}{312}\right)\) \(e\left(\frac{17}{312}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{101}{104}\right)\) \(e\left(\frac{8}{13}\right)\)