Properties

Label 8007.1787
Modulus $8007$
Conductor $8007$
Order $312$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8007, base_ring=CyclotomicField(312)) M = H._module chi = DirichletCharacter(H, M([156,273,106]))
 
Copy content pari:[g,chi] = znchar(Mod(1787,8007))
 

Basic properties

Modulus: \(8007\)
Conductor: \(8007\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(312\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8007.fe

\(\chi_{8007}(26,\cdot)\) \(\chi_{8007}(77,\cdot)\) \(\chi_{8007}(104,\cdot)\) \(\chi_{8007}(308,\cdot)\) \(\chi_{8007}(338,\cdot)\) \(\chi_{8007}(416,\cdot)\) \(\chi_{8007}(791,\cdot)\) \(\chi_{8007}(995,\cdot)\) \(\chi_{8007}(1022,\cdot)\) \(\chi_{8007}(1073,\cdot)\) \(\chi_{8007}(1154,\cdot)\) \(\chi_{8007}(1232,\cdot)\) \(\chi_{8007}(1277,\cdot)\) \(\chi_{8007}(1352,\cdot)\) \(\chi_{8007}(1613,\cdot)\) \(\chi_{8007}(1658,\cdot)\) \(\chi_{8007}(1664,\cdot)\) \(\chi_{8007}(1709,\cdot)\) \(\chi_{8007}(1742,\cdot)\) \(\chi_{8007}(1787,\cdot)\) \(\chi_{8007}(1793,\cdot)\) \(\chi_{8007}(1811,\cdot)\) \(\chi_{8007}(1889,\cdot)\) \(\chi_{8007}(1946,\cdot)\) \(\chi_{8007}(2021,\cdot)\) \(\chi_{8007}(2270,\cdot)\) \(\chi_{8007}(2321,\cdot)\) \(\chi_{8007}(2429,\cdot)\) \(\chi_{8007}(2450,\cdot)\) \(\chi_{8007}(2474,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{312})$
Fixed field: Number field defined by a degree 312 polynomial (not computed)

Values on generators

\((5339,1414,7855)\) → \((-1,e\left(\frac{7}{8}\right),e\left(\frac{53}{156}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\( \chi_{ 8007 }(1787, a) \) \(1\)\(1\)\(e\left(\frac{17}{26}\right)\)\(e\left(\frac{4}{13}\right)\)\(e\left(\frac{67}{312}\right)\)\(e\left(\frac{59}{104}\right)\)\(e\left(\frac{25}{26}\right)\)\(e\left(\frac{271}{312}\right)\)\(e\left(\frac{43}{312}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{23}{104}\right)\)\(e\left(\frac{8}{13}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8007 }(1787,a) \;\) at \(\;a = \) e.g. 2