sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8007, base_ring=CyclotomicField(312))
M = H._module
chi = DirichletCharacter(H, M([156,273,106]))
pari:[g,chi] = znchar(Mod(1787,8007))
Modulus: | \(8007\) | |
Conductor: | \(8007\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(312\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{8007}(26,\cdot)\)
\(\chi_{8007}(77,\cdot)\)
\(\chi_{8007}(104,\cdot)\)
\(\chi_{8007}(308,\cdot)\)
\(\chi_{8007}(338,\cdot)\)
\(\chi_{8007}(416,\cdot)\)
\(\chi_{8007}(791,\cdot)\)
\(\chi_{8007}(995,\cdot)\)
\(\chi_{8007}(1022,\cdot)\)
\(\chi_{8007}(1073,\cdot)\)
\(\chi_{8007}(1154,\cdot)\)
\(\chi_{8007}(1232,\cdot)\)
\(\chi_{8007}(1277,\cdot)\)
\(\chi_{8007}(1352,\cdot)\)
\(\chi_{8007}(1613,\cdot)\)
\(\chi_{8007}(1658,\cdot)\)
\(\chi_{8007}(1664,\cdot)\)
\(\chi_{8007}(1709,\cdot)\)
\(\chi_{8007}(1742,\cdot)\)
\(\chi_{8007}(1787,\cdot)\)
\(\chi_{8007}(1793,\cdot)\)
\(\chi_{8007}(1811,\cdot)\)
\(\chi_{8007}(1889,\cdot)\)
\(\chi_{8007}(1946,\cdot)\)
\(\chi_{8007}(2021,\cdot)\)
\(\chi_{8007}(2270,\cdot)\)
\(\chi_{8007}(2321,\cdot)\)
\(\chi_{8007}(2429,\cdot)\)
\(\chi_{8007}(2450,\cdot)\)
\(\chi_{8007}(2474,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5339,1414,7855)\) → \((-1,e\left(\frac{7}{8}\right),e\left(\frac{53}{156}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
\( \chi_{ 8007 }(1787, a) \) |
\(1\) | \(1\) | \(e\left(\frac{17}{26}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{67}{312}\right)\) | \(e\left(\frac{59}{104}\right)\) | \(e\left(\frac{25}{26}\right)\) | \(e\left(\frac{271}{312}\right)\) | \(e\left(\frac{43}{312}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{23}{104}\right)\) | \(e\left(\frac{8}{13}\right)\) |
sage:chi.jacobi_sum(n)